如何识别图像边缘? (转载)

原文地址:

http://www.ruanyifeng.com/blog/2016/07/edge-recognition.html

 

 

作者: 阮一峰

日期: 2016年7月22日

 

 

 

 

 

图像识别(image recognition)是现在的热门技术。

文字识别、车牌识别、人脸识别都是它的应用。但是,这些都算初级应用,现在的技术已经发展到了这样一种地步:计算机可以识别出,这是一张狗的照片,那是一张猫的照片。

这是怎么做到的?

让我们从人眼说起,学者发现,人的视觉细胞对物体的边缘特别敏感。也就是说,我们先看到物体的轮廓,然后才判断这到底是什么东西。

计算机科学家受到启发,第一步也是先识别图像的边缘。

加州大学的学生 Adit Deshpande 写了一篇文章《A Beginner's Guide To Understanding Convolutional Neural Networks》,介绍了一种最简单的算法,非常具有启发性,体现了图像识别的基本思路。

首先,我们要明白,人看到的是图像,计算机看到的是一个数字矩阵。所谓"图像识别",就是从一大堆数字中找出规律。

怎样将图像转为数字呢?一般来说,为了过滤掉干扰信息,可以把图像缩小(比如缩小到 49 x 49 像素),并且把每个像素点的色彩信息转为灰度值,这样就得到了一个 49 x 49 的矩阵。

然后,从左上角开始,依次取出一个小区块,进行计算。

上图是取出一个 5 x 5 的区块。下面的计算以 7 x 7 的区块为例。

接着,需要有一些现成的边缘模式,比如垂直、直角、圆、锐角等等。

上图右边是一个圆角模式,左边是它对应的 7 x 7 灰度矩阵。可以看到,圆角所在的边缘灰度值比较高,其他地方都是0。

现在,就可以进行边缘识别了。下面是一张卡通老鼠的图片。

取出左上角的区块。

取样矩阵与模式矩阵对应位置的值相乘,进行累加,得到6600。这个值相当大,它说明什么呢?

取样矩阵移到老鼠头部,与模式矩阵相乘,得到的值是0。

乘积越大就说明越匹配,可以断定区块里的图像形状是圆角。通常会预置几十种模式,每个区块计算出最匹配的模式,然后再对整张图进行判断。

(完)

posted on   Angry_Panda  阅读(339)  评论(0编辑  收藏  举报

编辑推荐:
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 按钮权限的设计及实现
历史上的今天:
2017-12-16 2017年6月 六级成绩 有感(致逝去的研究生生活)

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示