Passion and Patience

Work Hard, Play Hard

导航

Hw1_for_compressed_sensing

First homework for compressed sensing

Now I've only read the first part of the problem, which want me to verify some things about \(\ell^p\) norm.

Update
1.1 For a function \(\| \cdot \|\) to be a norm, it needs to satisfy triangle inequality: \(\forall x, y \in \mathbb{R}^n, \|x + y\| \leq \|x \| + \| y \|\).
take \(x_1 = 2, x_i = 0\) for all other i, and \(y_2 = 2\) and \(y_i = 0\) for all other i. Then

\[\|x\|_{p}+\|y\|_{p} =2+2=4,\|x+y\|_{p} =\left(2^{p}+2^{p}\right)^{1 / p}=2^{1 / p} \cdot 2 >2 \cdot 2=\|x\|_{p}+\|y\|_{p} \]

which contrdicts the property of a norm.
Reference for question1: https://statisticaloddsandends.wordpress.com/2020/05/27/lp-norm-is-not-a-norm-when-p-1/

1.2 For \(1\le p<\infty\), we have

\[\left\|\alpha x+(1-\alpha)y\right\|=\left(\sum_{i=1}^N|\alpha x+(1-\alpha)y|^p\right)^\frac{1}{p}\le\left(\sum_{i=1}^N\left(\alpha^p|x_i|^p+(1-\alpha)^p|y_i|^p\right)\right)^\frac{1}{p} \]

So

\[\left(\left\|\alpha x+(1-\alpha)y\right\|\right)^p=\alpha^p\sum_{i=1}^N|x_i|^p+(1-\alpha)^p\sum_{i=1}^N|y_i|^p \]

Similarly, we have

\[\alpha\|x\|+(1-\alpha)\|y\|=\left\{\alpha\left(\sum_{i=1}^N|x_i|^p\right)+(1-\alpha)\left(\sum_{i=1}^N|y_i|^p\right)\right\}^\frac{1}{p} \]

and

\[\left(\alpha\|x\|+(1-\alpha)\|y\|\right)^p=\alpha\sum_{i=1}^N|x_i|^p+(1-\alpha)\sum_{i=1}^N|y_i|^p \]

Set \(\alpha\in[0,1]\) and \(p>1\), so \(\alpha^p<\alpha\) and \((1-\alpha)^p<1-\alpha\).

Hence we get \(\textit{inequality-1}\):

\[\alpha\|x\|_p+(1-\alpha)\|y\|_p\ge\|\alpha x+(1-\alpha)y\|_p, \forall \alpha,\alpha\in[0,1] \]

For \(p=\infty\),

\[\alpha\|x\|_\infty+(1-\alpha)\|y\|_\infty=\alpha\max_i|x_i|+(1-\alpha)\max_i|y_i| \]

\[\left\|\alpha x+(1-\alpha)y\right\|_\infty=\max_i|\alpha x_i+(1-\alpha)y_i|\le\alpha\max_i|x_i|+(1-\alpha)\max_i|y_i|=\alpha\|x\|_\infty+(1-\alpha)\|y\|_\infty \]

which verifies \(\textit{inequality-2}\):

\[\alpha\|x\|_\infty+(1-\alpha)\|y\|_\infty\ge\|\alpha x+(1-\alpha)y\|_\infty \]

According to the above two inequalities, we have verified the convexity of the norm.

1.3 Since that when p<1,$\left | \cdot \right | $ is not a norm function, so we just consider the circumstances that \(p>1\). Reference for question3: https://kamindo.files.wordpress.com/2009/08/1-paper_04-12-2013.pdf

Intuitively if we assume \(\|x\|_p<\|x\|_q\) when \(1\le p<q\), according to the definition of norm, we have

\[\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}< \left(\sum_{i}\left|x_{i}\right|^{q}\right)^{1 / q} \]

Take the logarithm function on both sides,

\[\frac{1}{p}\log\left(\sum_{i}\left|x_{i}\right|^{p}\right)< \frac{1}{q}\log\left(\sum_{i}\left|x_{i}\right|^{q}\right)\Rightarrow\log\left(\sum_{i}\left|x_{i}\right|^{p-q}\right)<\frac{p}{q}< 1\Rightarrow\sum_{i}\left|x_{i}\right|^{p-q}<C \]

where \(C\) is a constant. Since \(x\) is an arbitrary variable/vetor, the original inequality cannot holds.

The following is a rigorous proof: Let \(1\le p\le q\le\infty.\) For every \(x\in\ell^p\), we have
\(\begin{aligned} \|x\|_{q}^{q} & =\sum_{k}\left|x_{k}\right|^{q} \\ & =\sum_{k}\left|x_{k}\right|^{q-p}\left|x_{k}\right|^{p} \\ & \leq \sup _{k}\left|x_{k}\right|^{q-p} \sum_{k}\left|x_{k}\right|^{p} \\ & \leq\left[\sum_{k}\left|x_{k}\right|^{p}\right]^{\frac{q-p}{p}} \sum_{k}\left|x_{k}\right|^{p} \\ & =\left[\sum_{k}\left|x_{k}\right|^{p}\right]^{\frac{q}{p}} . \end{aligned}\)
Taking the q-th roots of both sides, we get \(\|x\|_{q} \leq\|x\|_{p}.\)
P2:
\(\operatorname{spark}(\mathbf{A})=\min _{\mathbf{d} \neq \mathbf{0}, \mathbf{A} \mathbf{d}=\mathbf{0}}\|\mathbf{d}\|_{0}\)
Since krank(A) is the maximum value of k such that any k columns of a matrix A are linearly independent, I expressed it in the mathematical way:
$krank(A)=\max_{\forall \mathbf{d},\mathbf{Ad\ne0}}\left ( k |k=\left | d \right |_0 \right ) $
Compare the above two formulas, we can find that \(1-\mathit{krank} (\mathbf{A} )=\mathit{spark} (\mathbf{A} )\).

P3:

P4:

  1. \(f(x)=\|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|\)
    Now we talk about the subgradient of \(\textit{absolute value}\). For \(x_i<0\), the subgradient is unique \(\partial f(x_i)={-1}.\) Similarly, for \(x_i>0\) we have \(\partial f(x_i)={1}.\) At \(x_i=0,\) the subdifferential is defined by the inequality \(|x|>gx\) for all x, which can be satisfied when \(g \in[-1,1].\) So for each element in x, we have the overall subgradient.

P5: I've been stucked in the iteration steps.
Reference: http://faculty.bicmr.pku.edu.cn/~wenzw/optbook/pages/lasso_subgrad/l1_subgrad.html

hh😂 I've learned how to express \(\ell\) in latex

posted on 2023-02-21 22:59  安静的聆  阅读(12)  评论(0编辑  收藏  举报