2020杭电多校第六场 1010-Expectation 生成树计数
1010-Expectation
题意
给一个\(n\)个点\(m\)条边的无向图,定义生成树的权值为生成树上所有边权的 $ AND $ 和,问随机选择一个生成树的权值的期望是多少。
\(n \le100,m \le 10^4,w\le 10^9\)
分析
利用基尔霍夫矩阵可以在\(O(n^3)\)的时间内计算出生成树的个数,先计算出总的生成树个数\(tot\),因为\(AND\)运算是二进制当前位全部为\(1\)才为\(1\),枚举二进制每一位,将边权的二进制中这一位为\(1\)的边加进图中,计算一遍生成树的个数\(num\),二进制第\(i\)位对期望的贡献即为\(2^i \times \frac{num}{tot}\),将二进制每一位的贡献加起来就是总的期望值了。
总时间复杂度为\(O(Tn^3log(w))\)。
code
#include<algorithm>
#include<iostream>
#include<cstring>
#include<iomanip>
#include<sstream>
#include<cstdio>
#include<string>
#include<vector>
#include<bitset>
#include<queue>
#include<cmath>
#include<stack>
#include<set>
#include<map>
#define rep(i,x,n) for(int i=x;i<=n;i++)
#define per(i,n,x) for(int i=n;i>=x;i--)
#define sz(a) int(a.size())
#define rson mid+1,r,p<<1|1
#define pii pair<int,int>
#define lson l,mid,p<<1
#define ll long long
#define pb push_back
#define mp make_pair
#define se second
#define fi first
using namespace std;
const double eps = 1e-8;
const ll mod = 998244353;
const int N = 1e5 + 10;
const int inf = 1e9;
struct ppo {
int x, y, w;
} e[N];
int T;
ll K[110][110];
ll ksm(ll a, ll b) {
ll ret = 1;
while (b) {
if (b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
ll gauss(int n) {
ll res = 1;
for (int i = 1; i <= n - 1; i++) {
for (int j = i + 1; j <= n - 1; j++) {
while (K[j][i]) {
int t = K[i][i] / K[j][i];
for (int k = i; k <= n - 1; k++)
K[i][k] = (K[i][k] - 1ll * t * K[j][k] % mod + mod) % mod;
swap(K[i], K[j]);
res = -res;
}
}
res = (res * K[i][i]) % mod;
res = (res + mod) % mod;
}
return (res + mod) % mod;
}
int main() {
scanf("%d", &T);
while (T--) {
int n, m;
scanf("%d%d", &n, &m);
memset(K, 0, sizeof(K));
for (int i = 1; i <= m; i++) {
int x, y, w;
scanf("%d%d%d", &x, &y, &w);
K[x - 1][x - 1]++;
K[y - 1][y - 1]++;
K[x - 1][y - 1]--;
K[y - 1][x - 1]--;
e[i] = ppo{x, y, w};
}
ll base = gauss(n);
base = ksm(base, mod - 2);
ll ans = 0;
rep(i, 0, 30) {
memset(K, 0, sizeof(K));
rep(j, 1, m) if (e[j].w >> i & 1) {
ppo it = e[j];
K[it.x - 1][it.x - 1]++;
K[it.y - 1][it.y - 1]++;
K[it.x - 1][it.y - 1]--;
K[it.y - 1][it.x - 1]--;
}
ans += (1ll << i) % mod * gauss(n) % mod ;
ans %= mod;
}
ans = (ans * base) % mod;
printf("%lld\n", ans);
}
return 0;
}