pytorch中tensor数据和numpy数据转换中注意的一个问题

转载自:(pytorch中tensor数据和numpy数据转换中注意的一个问题)[https://blog.csdn.net/nihate/article/details/82791277]
在pytorch中,把numpy.array数据转换到张量tensor数据的常用函数是torch.from_numpy(array)或者torch.Tensor(array),第一种函数更常用。下面通过代码看一下区别:

import numpy as np
import torch

a=np.arange(6,dtype=int).reshape(2,3)
b=torch.from_numpy(a)
c=torch.Tensor(a)

a[0][0]=10
print(a,'\n',b,'\n',c)
[[10  1  2]
 [ 3  4  5]] 
 tensor([[10,  1,  2],
        [ 3,  4,  5]], dtype=torch.int32) 
 tensor([[0., 1., 2.],
        [3., 4., 5.]])

c[0][0]=10
print(a,'\n',b,'\n',c)
[[10  1  2]
 [ 3  4  5]] 
 tensor([[10,  1,  2],
        [ 3,  4,  5]], dtype=torch.int32) 
 tensor([[10.,  1.,  2.],
        [ 3.,  4.,  5.]])

print(b.type())
torch.IntTensor
print(c.type())
torch.FloatTensor

可以看出修改数组a的元素值,张量b的元素值也改变了,但是张量c却不变。修改张量c的元素值,数组a和张量b的元素值都不变。这说明torch.from_numpy(array)是做数组的浅拷贝,torch.Tensor(array)是做数组的深拷贝

posted @ 2019-08-05 11:48  Shaw_喆宇  阅读(6930)  评论(0编辑  收藏  举报