进程

相关概念

进程

进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。在早期面向进程设计的计算机结构中,进程是程序的基本执行实体;在当代面向线程设计的计算机结构中,进程是线程的容器。程序是指令、数据及其组织形式的描述,进程是程序的实体。

狭义定义:进程是正在运行的程序的实例(an instance of a computer program that is being executed)。

广义定义:进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。它是操作系统动态执行的基本单元,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元。

同步/异步

所谓同步就是一个任务的完成需要依赖另外一个任务时,只有等待被依赖的任务完成后,依赖的任务才能算完成,这是一种可靠的任务序列。要么成功都成功,失败都失败,两个任务的状态可以保持一致。

所谓异步是不需要等待被依赖的任务完成,只是通知被依赖的任务要完成什么工作,依赖的任务也立即执行,只要自己完成了整个任务就算完成了。至于被依赖的任务最终是否真正完成,依赖它的任务无法确定,所以它是不可靠的任务序列。

阻塞/非阻塞

阻塞和非阻塞这两个概念与程序等待消息通知(无所谓同步或者异步)时的状态有关。也就是说阻塞与非阻塞主要是程序(线程)等待消息通知时的状态角度来说的。

并发/并行

并行 : 并行是指多个任务同时执行,比如两个男人同时在给自己女朋友发微信。

并发 : 并发是多个任务交替轮流使用资源,比如一个男人在给他7个女朋友发微信,只要他发的够快,宏观上来说他在同时聊7个人。

进程状态与调度

在了解其他概念之前,我们首先要了解进程的几个状态。在程序运行的过程中,由于被操作系统的调度算法控制,程序会进入几个状态:就绪,运行和阻塞。

(1)就绪(Ready)状态

当进程已分配到除CPU以外的所有必要的资源,只要获得处理机便可立即执行,这时的进程状态称为就绪状态。

(2)执行/运行(Running)状态当进程已获得处理机,其程序正在处理机上执行,此时的进程状态称为执行状态。

(3)阻塞(Blocked)状态正在执行的进程,由于等待某个事件发生而无法执行时,便放弃处理机而处于阻塞状态。引起进程阻塞的事件可有多种,例如,等待I/O完成、申请缓冲区不能满足、等待信件(信号)等。

Python中使用多进程

之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程。所有的进程都是通过它的父进程来创建的。因此,运行起来的python程序也是一个进程,那么我们也可以在程序中再创建进程。多个进程可以实现并发效果,也就是说,当我们的程序中存在多个进程的时候,在某些时候,就会让程序的执行速度变快。以我们之前所学的知识,并不能实现创建进程这个功能,所以我们就需要借助python中强大的模块。

multiprocessing模块

仔细说来,multiprocess不是一个模块而是python中一个操作、管理进程的包。 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块。由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:创建进程部分,进程同步部分,进程池部分,进程之间数据共享。

multiprocessing.Process介绍

process模块是一个创建进程的模块,借助这个模块,就可以完成进程的创建。

复制代码
Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)

强调:
1. 需要使用关键字的方式来指定参数
2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号

参数介绍:
1 group参数未使用,值始终为None
2 target表示调用对象,即子进程要执行的任务
3 args表示调用对象的位置参数元组,args=(1,2,'egon',)
4 kwargs表示调用对象的字典,kwargs={'name':'egon','age':18}
5 name为子进程的名称
复制代码

p.start():启动进程,并调用该子进程中的p.run()
p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法
p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
p.is_alive():如果p仍然运行,返回True
p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程

方法介绍

复制代码
1 p.start():启动进程,并调用该子进程中的p.run()
2 p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法
3 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
4 p.is_alive():如果p仍然运行,返回True
5 p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程 
复制代码

p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
p.name:进程的名称
p.pid:进程的pid
p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)

属性介绍

复制代码
1 p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
2 p.name:进程的名称
3 p.pid:进程的pid
4 p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
5 p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)
复制代码
在Windows操作系统中由于没有fork(linux操作系统中创建进程的机制),在创建子进程的时候会自动 import 启动它的这个文件,而在 import 的时候又执行了整个文件。因此如果将process()直接写在文件中就会无限递归创建子进程报错。所以必须把创建子进程的部分使用if __name__ ==‘__main__’ 判断保护起来,import 的时候  ,就不会递归运行了。
在Windows操作系统中由于没有fork(linux操作系统中创建进程的机制),在创建子进程的时候会自动 import 启动它的这个文件,而在 import 的时候又执行了整个文件。因此如果将process()直接写在文件中就会无限递归创建子进程报错。所以必须把创建子进程的部分使用if __name__ ==‘__main__’ 判断保护起来,import 的时候  ,就不会递归运行了。

使用process模块创建进程

在一个python进程中开启子进程,start方法和并发效果。

复制代码
from multiprocessing import Process
import time


def task(name):
    print('{} is running!'.format(name))
    time.sleep(3)
    print('{} is done!'.format(name))


# Windows开子进程要写在__name__==__main__下
# 因为开子进程会重新加载父进程的内容
if __name__ == '__main__':
    # 创建一个Python中的进程对象
    p = Process(target=task, args=('t1', ))
    # p = Process(target=task, kwargs={'name': 't1'})
    p.start()  # 调用操作系统接口启动一个进程执行命令
    print('--- 主进程 ----')
复制代码

查看主进程id和父进程id:

from multiprocessing import Process
import time
import os


def task(name):
    print('{} is running!'.format(name))
    print('子进程id :', os.getpid(), '父进程id :', os.getppid())
    time.sleep(3)
    print('{} is done!'.format(name))


# Windows开子进程要写在__name__==__main__下
# 因为开子进程会重新加载父进程的内容
if __name__ == '__main__':
    print('主进程id :', os.getpid())
    # 创建一个Python中的进程对象
    p = Process(target=task, args=('t1', ))
    # p = Process(target=task, kwargs={'name': 't1'})
    p.start()  # 调用操作系统接口启动一个进程执行命令
    print('--- 主进程 ----')
复制代码
from multiprocessing import Process
import time
import os


def task(name):
    print('{} is running!'.format(name))
    print('子进程id :', os.getpid(), '父进程id :', os.getppid())
    time.sleep(3)
    print('{} is done!'.format(name))


# Windows开子进程要写在__name__==__main__下
# 因为开子进程会重新加载父进程的内容
if __name__ == '__main__':
    print('主进程id :', os.getpid())
    # 创建一个Python中的进程对象
    p = Process(target=task, args=('t1', ))
    # p = Process(target=task, kwargs={'name': 't1'})
    p.start()  # 调用操作系统接口启动一个进程执行命令
    print('--- 主进程 ----')
复制代码

我们再启动多个进程看一下,运行的效果:(注意,子进程的执行顺序不是根据启动顺序决定的)

复制代码
from multiprocessing import Process
import time


def task(name):
    print('{} is running!'.format(name))
    time.sleep(3)
    print('{} is done!'.format(name))


if __name__ == '__main__':
    for i in range(10):
        p = Process(target=task, args=(i, ))
        p.start()
    print('--- 主进程 ----')
复制代码

进程间的数据隔离

进程的运行时数据是互相独立的,不会相互影响。

想个办法,验证一下:

复制代码
from multiprocessing import Process
import time

x = 100


def change():
    global x
    x = 10
    print('子进程修改了x,子进程结束了!')


if __name__ == '__main__':
    p = Process(target=change)
    p.start()
    time.sleep(5)  # 想办法等子进程结束 此处应该有思考
    print(x)
复制代码

上面的例子中可以看到,父进程中的X变量并没有被子进程中的代码修改掉。

join

接下来我们看一下上面代码中的问题,也就是我们应该如何优雅的实现父进程等待子进程结束呢?

这里就用到了Python中进程对象的join()。

复制代码
from multiprocessing import Process

x = 100


def change():
    global x
    x = 10
    print('子进程修改了x,子进程结束了!')


if __name__ == '__main__':
    p = Process(target=change)
    p.start()
    p.join()  # 优雅地实现主进程等待子进程结束
    print(x)
复制代码

再来几个多线程的例子,验证一下:

复制代码
from multiprocessing import Process
import time


def task(n):
    print('这是子进程:{}'.format(n))
    time.sleep(n)
    print('子进程:{}结束了!'.format(n))


if __name__ == '__main__':
    start_time = time.time()
    p1 = Process(target=task, args=(1,))
    p2 = Process(target=task, args=(2,))
    p3 = Process(target=task, args=(3,))
    p1.start()
    p2.start()
    p3.start()

    p1.join()
    p2.join()
    p3.join()
    print('我是主进程')
    print('共耗时:{}'.format(time.time()-start_time))
复制代码

或者写成下面这样的简写方式:

from multiprocessing import Process
import time


def task(n):
print('这是子进程:{}'.format(n))
time.sleep(n)
print('子进程:{}结束了!'.format(n))


if __name__ == '__main__':
start_time = time.time()
# p1 = Process(target=task, args=(1,))
# p2 = Process(target=task, args=(2,))
# p3 = Process(target=task, args=(3,))
# p1.start()
# p2.start()
# p3.start()
#
# p1.join()
# p2.join()
# p3.join()
# 或者简写成下面的方式
p_list = []
for i in range(1, 4):
p = Process(target=task, args=(i,))
p.start()
p_list.append(p)
for p in p_list:
p.join()
print('我是主进程')
print('共耗时:{}'.format(time.time()-start_time))

for循环起进程

复制代码
from multiprocessing import Process
import time


def task(n):
    print('这是子进程:{}'.format(n))
    time.sleep(n)
    print('子进程:{}结束了!'.format(n))


if __name__ == '__main__':
    start_time = time.time()
    # p1 = Process(target=task, args=(1,))
    # p2 = Process(target=task, args=(2,))
    # p3 = Process(target=task, args=(3,))
    # p1.start()
    # p2.start()
    # p3.start()
    #
    # p1.join()
    # p2.join()
    # p3.join()
    # 或者简写成下面的方式
    p_list = []
    for i in range(1, 4):
        p = Process(target=task, args=(i,))
        p.start()
        p_list.append(p)
    for p in p_list:
        p.join()
    print('我是主进程')
    print('共耗时:{}'.format(time.time()-start_time))
复制代码

思考一下:

下面的代码有何不可?

from multiprocessing import Process
import time


def task(n):
print('这是子进程:{}'.format(n))
time.sleep(n)
print('子进程:{}结束了!'.format(n))


if __name__ == '__main__':
start_time = time.time()
p1 = Process(target=task, args=(1,))
p2 = Process(target=task, args=(2,))
p3 = Process(target=task, args=(3,))
p1.start()
p1.join()
p2.start()
p2.join()
p3.start()
p3.join()

print('我是主进程')
print('共耗时:{}'.format(time.time() - start_time))

这样写的问题是?

复制代码
from multiprocessing import Process
import time


def task(n):
    print('这是子进程:{}'.format(n))
    time.sleep(n)
    print('子进程:{}结束了!'.format(n))


if __name__ == '__main__':
    start_time = time.time()
    p1 = Process(target=task, args=(1,))
    p2 = Process(target=task, args=(2,))
    p3 = Process(target=task, args=(3,))
    p1.start()
    p1.join()
    p2.start()
    p2.join()
    p3.start()
    p3.join()

    print('我是主进程')
    print('共耗时:{}'.format(time.time() - start_time))
复制代码

除了上面这些开启进程的方法,还有一种以继承Process类的形式开启进程的方式

import os
from multiprocessing import Process


class MyProcess(Process):
def __init__(self,name):
super().__init__()
self.name=name
def run(self):
print(os.getpid())
print('%s 正在和女主播聊天' %self.name)

p1=MyProcess('wupeiqi')
p2=MyProcess('yuanhao')
p3=MyProcess('nezha')

p1.start() #start会自动调用run
p2.start()
# p2.run()
p3.start()


p1.join()
p2.join()
p3.join()

print('主线程')

通过继承Process类开启进程

复制代码
import os
from multiprocessing import Process


class MyProcess(Process):
    def __init__(self,name):
        super().__init__()
        self.name=name
    def run(self):
        print(os.getpid())
        print('%s 正在和女主播聊天' %self.name)

p1=MyProcess('wupeiqi')
p2=MyProcess('yuanhao')
p3=MyProcess('nezha')

p1.start() #start会自动调用run
p2.start()
# p2.run()
p3.start()


p1.join()
p2.join()
p3.join()

print('主线程')
复制代码

守护进程

父进程中将一个子进程设置为守护进程,那么这个子进程会随着主进程的结束而结束。

主进程创建守护进程

其一:守护进程会在主进程代码执行结束后就终止

其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children

注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止

import os
import time
from multiprocessing import Process

class Myprocess(Process):
def __init__(self,person):
super().__init__()
self.person = person
def run(self):
print(os.getpid(),self.name)
print('%s正在和女主播聊天' %self.person)


p=Myprocess('哪吒')
p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行
p.start()
time.sleep(10) # 在sleep时查看进程id对应的进程ps -ef|grep id
print('主')

守护进程的启动

复制代码
import os
import time
from multiprocessing import Process

class Myprocess(Process):
    def __init__(self,person):
        super().__init__()
        self.person = person
    def run(self):
        print(os.getpid(),self.name)
        print('%s正在和女主播聊天' %self.person)


p=Myprocess('哪吒')
p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行
p.start()
time.sleep(10) # 在sleep时查看进程id对应的进程ps -ef|grep id
print('主')
复制代码

from multiprocessing import Process

def foo():
print(123)
time.sleep(1)
print("end123")

def bar():
print(456)
time.sleep(3)
print("end456")


p1=Process(target=foo)
p2=Process(target=bar)

p1.daemon=True
p1.start()
p2.start()
time.sleep(0.1)
print("main-------")#打印该行则主进程代码结束,则守护进程p1应该被终止.#可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止.

主进程代码执行结束守护进程立即结束

复制代码
from multiprocessing import Process

def foo():
    print(123)
    time.sleep(1)
    print("end123")

def bar():
    print(456)
    time.sleep(3)
    print("end456")


p1=Process(target=foo)
p2=Process(target=bar)

p1.daemon=True
p1.start()
p2.start()
time.sleep(0.1)
print("main-------")#打印该行则主进程代码结束,则守护进程p1应该被终止.#可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止.
复制代码

socket聊天并发实例

from socket import *
from multiprocessing import Process

server=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind(('127.0.0.1',8080))
server.listen(5)

def talk(conn,client_addr):
while True:
try:
msg=conn.recv(1024)
if not msg:break
conn.send(msg.upper())
except Exception:
break

if __name__ == '__main__': #windows下start进程一定要写到这下面
while True:
conn,client_addr=server.accept()
p=Process(target=talk,args=(conn,client_addr))
p.start()

使用多进程实现socket聊天并发-server


复制代码
from socket import *
from multiprocessing import Process

server=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind(('127.0.0.1',8080))
server.listen(5)

def talk(conn,client_addr):
    while True:
        try:
            msg=conn.recv(1024)
            if not msg:break
            conn.send(msg.upper())
        except Exception:
            break

if __name__ == '__main__': #windows下start进程一定要写到这下面
    while True:
        conn,client_addr=server.accept()
        p=Process(target=talk,args=(conn,client_addr))
        p.start()
复制代码

from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080))


while True:
msg=input('>>: ').strip()
if not msg:continue

client.send(msg.encode('utf-8'))
msg=client.recv(1024)
print(msg.decode('utf-8'))

client端

复制代码
from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080))


while True:
    msg=input('>>: ').strip()
    if not msg:continue

    client.send(msg.encode('utf-8'))
    msg=client.recv(1024)
    print(msg.decode('utf-8'))
复制代码

多进程中的其他方法

from multiprocessing import Process
import time
import random

class Myprocess(Process):
def __init__(self,person):
self.name=person
super().__init__()

def run(self):
print('%s正在和网红脸聊天' %self.name)
time.sleep(random.randrange(1,5))
print('%s还在和网红脸聊天' %self.name)


p1=Myprocess('哪吒')
p1.start()

p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活
print(p1.is_alive()) #结果为True

print('开始')
print(p1.is_alive()) #结果为False

进程对象的其他方法:terminate,is_alive

复制代码
from multiprocessing import Process
import time
import random

class Myprocess(Process):
    def __init__(self,person):
        self.name=person
        super().__init__()

    def run(self):
        print('%s正在和网红脸聊天' %self.name)
        time.sleep(random.randrange(1,5))
        print('%s还在和网红脸聊天' %self.name)


p1=Myprocess('哪吒')
p1.start()

p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活
print(p1.is_alive()) #结果为True

print('开始')
print(p1.is_alive()) #结果为False
复制代码

class Myprocess(Process):
def __init__(self,person):
self.name=person # name属性是Process中的属性,标示进程的名字
super().__init__() # 执行父类的初始化方法会覆盖name属性
#self.name = person # 在这里设置就可以修改进程名字了
#self.person = person #如果不想覆盖进程名,就修改属性名称就可以了
def run(self):
print('%s正在和网红脸聊天' %self.name)
# print('%s正在和网红脸聊天' %self.person)
time.sleep(random.randrange(1,5))
print('%s正在和网红脸聊天' %self.name)
# print('%s正在和网红脸聊天' %self.person)
14
p1=Myprocess('哪吒')
p1.start()
print(p1.pid) #可以查看子进程的进程id

进程对象的其他属性:pid和name

复制代码
 1 class Myprocess(Process):
 2     def __init__(self,person):
 3         self.name=person   # name属性是Process中的属性,标示进程的名字
 4         super().__init__() # 执行父类的初始化方法会覆盖name属性
 5         #self.name = person # 在这里设置就可以修改进程名字了
 6         #self.person = person #如果不想覆盖进程名,就修改属性名称就可以了
 7     def run(self):
 8         print('%s正在和网红脸聊天' %self.name)
 9         # print('%s正在和网红脸聊天' %self.person)
10         time.sleep(random.randrange(1,5))
11         print('%s正在和网红脸聊天' %self.name)
12         # print('%s正在和网红脸聊天' %self.person)
13
14
15 p1=Myprocess('哪吒')
16 p1.start()
17 print(p1.pid)    #可以查看子进程的进程id
复制代码

互斥锁

通过刚刚的学习,我们千方百计实现了程序的异步,让多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制。尽管并发编程让我们能更加充分的利用IO资源,但是也给我们带来了新的问题。

当多个进程使用同一份数据资源的时候,就会因为竞争而引发数据安全或顺序混乱问题。

互斥锁介绍

下面的代码演示了不同的任务争抢一个资源(终端输出)的场景。

from multiprocessing import Process
import time
import random


def task1():
print('这是 task1 任务'.center(30, '-'))
print('task1 进了洗手间')
time.sleep(random.randint(1, 3))
print('task1 办事呢...')
time.sleep(random.randint(1, 3))
print('task1 走出了洗手间')


def task2():
print('这是 task2 任务'.center(30, '-'))
print('task2 进了洗手间')
time.sleep(random.randint(1, 3))
print('task2 办事呢...')
time.sleep(random.randint(1, 3))
print('task2 走出了洗手间')


def task3():
print('这是 task3 任务'.center(30, '-'))
print('task3 进了洗手间')
time.sleep(random.randint(1, 3))
print('task3 办事呢...')
time.sleep(random.randint(1, 3))
print('task3 走出了洗手间')


if __name__ == '__main__':
p1 = Process(target=task1)
p2 = Process(target=task2)
p3 = Process(target=task3)

p1.start()
p2.start()
p3.start()

进程之间竞争资源

复制代码
from multiprocessing import Process
import time
import random


def task1():
    print('这是 task1 任务'.center(30, '-'))
    print('task1 进了洗手间')
    time.sleep(random.randint(1, 3))
    print('task1 办事呢...')
    time.sleep(random.randint(1, 3))
    print('task1 走出了洗手间')


def task2():
    print('这是 task2 任务'.center(30, '-'))
    print('task2 进了洗手间')
    time.sleep(random.randint(1, 3))
    print('task2 办事呢...')
    time.sleep(random.randint(1, 3))
    print('task2 走出了洗手间')


def task3():
    print('这是 task3 任务'.center(30, '-'))
    print('task3 进了洗手间')
    time.sleep(random.randint(1, 3))
    print('task3 办事呢...')
    time.sleep(random.randint(1, 3))
    print('task3 走出了洗手间')


if __name__ == '__main__':
    p1 = Process(target=task1)
    p2 = Process(target=task2)
    p3 = Process(target=task3)

    p1.start()
    p2.start()
    p3.start()
复制代码

通过加锁来控制。

from multiprocessing import Process, Lock
import time
import random

# 生成一个互斥锁
mutex_lock = Lock()


def task1(lock):
# 锁门
lock.acquire()
print('这是 task1 任务'.center(30, '-'))
print('task1 进了洗手间')
time.sleep(random.randint(1, 3))
print('task1 办事呢...')
time.sleep(random.randint(1, 3))
print('task1 走出了洗手间')
# 释放锁
lock.release()


def task2(lock):
# 锁门
lock.acquire()
print('这是 task2 任务'.center(30, '-'))
print('task2 进了洗手间')
time.sleep(random.randint(1, 3))
print('task2 办事呢...')
time.sleep(random.randint(1, 3))
print('task2 走出了洗手间')
# 释放锁
lock.release()


def task3(lock):
# 锁门
lock.acquire()
print('这是 task3 任务'.center(30, '-'))
print('task3 进了洗手间')
time.sleep(random.randint(1, 3))
print('task3 办事呢...')
time.sleep(random.randint(1, 3))
print('task3 走出了洗手间')
# 释放锁
lock.release()


if __name__ == '__main__':
p1 = Process(target=task1, args=(mutex_lock, ))
p2 = Process(target=task2, args=(mutex_lock, ))
p3 = Process(target=task3, args=(mutex_lock, ))

# 释放新建进程的信号,具体谁先启动无法确定
p1.start()
p2.start()
p3.start()

使用互斥锁解决竞争

复制代码
from multiprocessing import Process, Lock
import time
import random

# 生成一个互斥锁
mutex_lock = Lock()


def task1(lock):
    # 锁门
    lock.acquire()
    print('这是 task1 任务'.center(30, '-'))
    print('task1 进了洗手间')
    time.sleep(random.randint(1, 3))
    print('task1 办事呢...')
    time.sleep(random.randint(1, 3))
    print('task1 走出了洗手间')
    # 释放锁
    lock.release()


def task2(lock):
    # 锁门
    lock.acquire()
    print('这是 task2 任务'.center(30, '-'))
    print('task2 进了洗手间')
    time.sleep(random.randint(1, 3))
    print('task2 办事呢...')
    time.sleep(random.randint(1, 3))
    print('task2 走出了洗手间')
    # 释放锁
    lock.release()


def task3(lock):
    # 锁门
    lock.acquire()
    print('这是 task3 任务'.center(30, '-'))
    print('task3 进了洗手间')
    time.sleep(random.randint(1, 3))
    print('task3 办事呢...')
    time.sleep(random.randint(1, 3))
    print('task3 走出了洗手间')
    # 释放锁
    lock.release()


if __name__ == '__main__':
    p1 = Process(target=task1, args=(mutex_lock, ))
    p2 = Process(target=task2, args=(mutex_lock, ))
    p3 = Process(target=task3, args=(mutex_lock, ))

    # 释放新建进程的信号,具体谁先启动无法确定
    p1.start()
    p2.start()
    p3.start()
复制代码

上面这种情况虽然使用加锁的形式实现了顺序的执行,但是程序又重新变成串行了,这样确实会浪费了时间,却保证了数据的安全。

互斥锁示例

接下来,我们以模拟抢票为例,来看看数据安全的重要性。

from multiprocessing import Process, Lock
import json
import time
import random
import os


def search():
time.sleep(0.5)
with open('db.json', 'r', encoding='utf8') as f:
data = json.load(f)
print('剩余票数:{}'.format(data.get('count')))


def buy():

with open('db.json', 'r', encoding='utf8') as f:
data = json.load(f)
if data.get('count', 0) > 0:
data['count'] -= 1
time.sleep(random.randint(1, 3))
with open('db.json', 'w', encoding='utf8') as f2:
json.dump(data, f2)
print('{}购票成功!'.format(os.getpid()))
else:
print('购票失败')


def task():
search() # 查票并发
buy() # 串行买票


if __name__ == '__main__':
for i in range(10):
p = Process(target=task)
p.start()

多进程同时抢票

复制代码
from multiprocessing import Process, Lock
import json
import time
import random
import os


def search():
    time.sleep(0.5)
    with open('db.json', 'r', encoding='utf8') as f:
        data = json.load(f)
        print('剩余票数:{}'.format(data.get('count')))


def buy():

    with open('db.json', 'r', encoding='utf8') as f:
        data = json.load(f)
    if data.get('count', 0) > 0:
        data['count'] -= 1
        time.sleep(random.randint(1, 3))
        with open('db.json', 'w', encoding='utf8') as f2:
            json.dump(data, f2)
        print('{}购票成功!'.format(os.getpid()))
    else:
        print('购票失败')


def task():
    search()  # 查票并发
    buy()  # 串行买票


if __name__ == '__main__':
    for i in range(10):
        p = Process(target=task)
        p.start()
复制代码

使用互斥锁,保证数据安全。

复制代码
from multiprocessing import Process, Lock
import json
import time
import random
import os

# 设置互斥锁
mutex_lock = Lock()


def search():
    time.sleep(0.5)
    with open('db.json', 'r', encoding='utf8') as f:
        data = json.load(f)
        print('剩余票数:{}'.format(data.get('count')))


def buy():

    with open('db.json', 'r', encoding='utf8') as f:
        data = json.load(f)
    if data.get('count', 0) > 0:
        data['count'] -= 1
        time.sleep(random.randint(1, 3))
        with open('db.json', 'w', encoding='utf8') as f2:
            json.dump(data, f2)
        print('{}购票成功!'.format(os.getpid()))
    else:
        print('购票失败')


def task(lock):
    search()  # 查票并发
    lock.acquire()
    buy()  # 串行买票
    lock.release()


if __name__ == '__main__':
    for i in range(10):
        p = Process(target=task, args=(mutex_lock, ))
        p.start()
复制代码
 

from multiprocessing import Process, Lock
import json
import time
import random
import os

# 设置互斥锁
mutex_lock = Lock()


def search():
time.sleep(0.5)
with open('db.json', 'r', encoding='utf8') as f:
data = json.load(f)
print('剩余票数:{}'.format(data.get('count')))


def buy():

with open('db.json', 'r', encoding='utf8') as f:
data = json.load(f)
if data.get('count', 0) > 0:
data['count'] -= 1
time.sleep(random.randint(1, 3))
with open('db.json', 'w', encoding='utf8') as f2:
json.dump(data, f2)
print('{}购票成功!'.format(os.getpid()))
else:
print('购票失败')


def task(lock):
search() # 查票并发
lock.acquire()
buy() # 串行买票
lock.release()


if __name__ == '__main__':
for i in range(10):
p = Process(target=task, args=(mutex_lock, ))
p.start()

互斥锁版抢票

一点思考

加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,在牺牲速度的前提下保证数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
1. 效率低(共享数据基于文件,而文件是硬盘上的数据)
2. 需要自己加锁处理

因此我们最好找寻一种解决方案能够兼顾:
1. 效率高(多个进程共享一块内存的数据)
2. 帮我们处理好锁问题。
mutiprocessing模块中为我们提供了一个IPC通信机制:队列和管道。
队列和管道都是将数据存放于内存中,队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可扩展性。

队列

Queue介绍

我们可以创建一个共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。

Queue([maxsize])
创建共享的进程队列。
参数 :maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。
底层队列使用管道和锁定实现。

Queue([maxsize])
创建共享的进程队列。maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。底层队列使用管道和锁定实现。另外,还需要运行支持线程以便队列中的数据传输到底层管道中。
Queue的实例q具有以下方法:

q.get( [ block [ ,timeout ] ] )
返回q中的一个项目。如果q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 如果设置为False,将引发Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。如果在制定的时间间隔内没有项目变为可用,将引发Queue.Empty异常。

q.get_nowait( )
同q.get(False)方法。

q.put(item [, block [,timeout ] ] )
将item放入队列。如果队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为True。如果设置为False,将引发Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引发Queue.Full异常。

q.qsize()
返回队列中目前项目的正确数量。此函数的结果并不可靠,因为在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引发NotImplementedError异常。


q.empty()
如果调用此方法时 q为空,返回True。如果其他进程或线程正在往队列中添加项目,结果是不可靠的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。

q.full()
如果q已满,返回为True. 由于线程的存在,结果也可能是不可靠的(参考q.empty()方法)。。

方法介绍

复制代码
Queue([maxsize])
创建共享的进程队列。maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。底层队列使用管道和锁定实现。另外,还需要运行支持线程以便队列中的数据传输到底层管道中。
Queue的实例q具有以下方法:

q.get( [ block [ ,timeout ] ] )
返回q中的一个项目。如果q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 如果设置为False,将引发Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。如果在制定的时间间隔内没有项目变为可用,将引发Queue.Empty异常。

q.get_nowait( )
同q.get(False)方法。

q.put(item [, block [,timeout ] ] )
将item放入队列。如果队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为True。如果设置为False,将引发Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引发Queue.Full异常。

q.qsize()
返回队列中目前项目的正确数量。此函数的结果并不可靠,因为在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引发NotImplementedError异常。


q.empty()
如果调用此方法时 q为空,返回True。如果其他进程或线程正在往队列中添加项目,结果是不可靠的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。

q.full()
如果q已满,返回为True. 由于线程的存在,结果也可能是不可靠的(参考q.empty()方法)。。
复制代码

q.close()
关闭队列,防止队列中加入更多数据。调用此方法时,后台线程将继续写入那些已入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将自动调用此方法。关闭队列不会在队列使用者中生成任何类型的数据结束信号或异常。例如,如果某个使用者正被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。

q.cancel_join_thread()
不会再进程退出时自动连接后台线程。这可以防止join_thread()方法阻塞。

q.join_thread()
连接队列的后台线程。此方法用于在调用q.close()方法后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread()方法可以禁止这种行为。

其他方法(了解)

复制代码
q.close()
关闭队列,防止队列中加入更多数据。调用此方法时,后台线程将继续写入那些已入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将自动调用此方法。关闭队列不会在队列使用者中生成任何类型的数据结束信号或异常。例如,如果某个使用者正被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。

q.cancel_join_thread()
不会再进程退出时自动连接后台线程。这可以防止join_thread()方法阻塞。

q.join_thread()
连接队列的后台线程。此方法用于在调用q.close()方法后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread()方法可以禁止这种行为。
复制代码

队列简单示例

'''
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
'''

from multiprocessing import Queue
q=Queue(3)

#put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
# q.put(3) # 如果队列已经满了,程序就会停在这里,等待数据被别人取走,再将数据放入队列。
# 如果队列中的数据一直不被取走,程序就会永远停在这里。
try:
q.put_nowait(3) # 可以使用put_nowait,如果队列满了不会阻塞,但是会因为队列满了而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。
print('队列已经满了')

# 因此,我们再放入数据之前,可以先看一下队列的状态,如果已经满了,就不继续put了。
print(q.full()) #满了

print(q.get())
print(q.get())
print(q.get())
# print(q.get()) # 同put方法一样,如果队列已经空了,那么继续取就会出现阻塞。
try:
q.get_nowait(3) # 可以使用get_nowait,如果队列满了不会阻塞,但是会因为没取到值而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去。
print('队列已经空了')

print(q.empty()) #空了

单看队列用法

复制代码
'''
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
'''

from multiprocessing import Queue
q=Queue(3)

#put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
# q.put(3)   # 如果队列已经满了,程序就会停在这里,等待数据被别人取走,再将数据放入队列。
           # 如果队列中的数据一直不被取走,程序就会永远停在这里。
try:
    q.put_nowait(3) # 可以使用put_nowait,如果队列满了不会阻塞,但是会因为队列满了而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。
    print('队列已经满了')

# 因此,我们再放入数据之前,可以先看一下队列的状态,如果已经满了,就不继续put了。
print(q.full()) #满了

print(q.get())
print(q.get())
print(q.get())
# print(q.get()) # 同put方法一样,如果队列已经空了,那么继续取就会出现阻塞。
try:
    q.get_nowait(3) # 可以使用get_nowait,如果队列满了不会阻塞,但是会因为没取到值而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去。
    print('队列已经空了')

print(q.empty()) #空了
复制代码

上面这个例子还没有加入进程通信,只是先来看看队列为我们提供的方法,以及这些方法的使用和现象。

import time
from multiprocessing import Process, Queue

def f(q):
q.put([time.asctime(), 'hi', 'hello']) #调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据。

if __name__ == '__main__':
q = Queue() #创建一个Queue对象
p = Process(target=f, args=(q,)) #创建一个进程
p.start()
print(q.get())
p.join()

子进程发送数据给父进程

复制代码
import time
from multiprocessing import Process, Queue

def f(q):
    q.put([time.asctime(), 'hi', 'hello'])  #调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据。

if __name__ == '__main__':
    q = Queue() #创建一个Queue对象
    p = Process(target=f, args=(q,)) #创建一个进程
    p.start()
    print(q.get())
    p.join()
复制代码

上面是一个queue的简单应用,使用队列q对象调用get函数来取得队列中最先进入的数据。 接下来看一个稍微复杂一些的例子:

import os
import time
import multiprocessing

# 向queue中输入数据的函数
def inputQ(queue):
info = str(os.getpid()) + '(put):' + str(time.asctime())
queue.put(info)

# 向queue中输出数据的函数
def outputQ(queue):
info = queue.get()
print ('%s%s\033[32m%s\033[0m'%(str(os.getpid()), '(get):',info))

# Main
if __name__ == '__main__':
multiprocessing.freeze_support()
record1 = [] # store input processes
record2 = [] # store output processes
queue = multiprocessing.Queue(3)

# 输入进程
for i in range(10):
process = multiprocessing.Process(target=inputQ,args=(queue,))
process.start()
record1.append(process)

# 输出进程
for i in range(10):
process = multiprocessing.Process(target=outputQ,args=(queue,))
process.start()
record2.append(process)

for p in record1:
p.join()

for p in record2:
p.join()

批量生产数据放入队列再批量获取结果 x

复制代码
import os
import time
import multiprocessing

# 向queue中输入数据的函数
def inputQ(queue):
    info = str(os.getpid()) + '(put):' + str(time.asctime())
    queue.put(info)

# 向queue中输出数据的函数
def outputQ(queue):
    info = queue.get()
    print ('%s%s\033[32m%s\033[0m'%(str(os.getpid()), '(get):',info))

# Main
if __name__ == '__main__':
    multiprocessing.freeze_support()
    record1 = []   # store input processes
    record2 = []   # store output processes
    queue = multiprocessing.Queue(3)

    # 输入进程
    for i in range(10):
        process = multiprocessing.Process(target=inputQ,args=(queue,))
        process.start()
        record1.append(process)

    # 输出进程
    for i in range(10):
        process = multiprocessing.Process(target=outputQ,args=(queue,))
        process.start()
        record2.append(process)

    for p in record1:
        p.join()

    for p in record2:
        p.join()
复制代码

生产者消费者模型

在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题。该模式通过平衡生产数据和消费数据的工作能力来提高程序的整体处理数据的速度。

为什么要使用生产者和消费者模式

生产者就是生产数据的一方,消费者就是消费数据的一方。通常生产者和消费者的能力很难协调,例如:如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个问题于是引入了生产者和消费者模式。

什么是生产者消费者模式

生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。

基于队列实现生产者消费者模型

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(q):
for i in range(10):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))

if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=(q,))

#消费者们:即吃货们
c1=Process(target=consumer,args=(q,))

#开始
p1.start()
c1.start()
print('主')

基于队列实现生产者消费者模型

复制代码
from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(q):
    for i in range(10):
        time.sleep(random.randint(1,3))
        res='包子%s' %i
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))

if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=(q,))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    c1.start()
    print('主')
复制代码

此时的问题是主进程永远不会结束,原因是:生产者p在生产完后就结束了,但是消费者c在取空了q之后,则一直处于死循环中且卡在q.get()这一步。

解决方式无非是让生产者在生产完毕后,往队列中再发一个结束信号,这样消费者在接收到结束信号后就可以break出死循环。

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res is None:break #收到结束信号则结束
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(q):
for i in range(10):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
q.put(None) #发送结束信号
if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=(q,))

#消费者们:即吃货们
c1=Process(target=consumer,args=(q,))

#开始
p1.start()
c1.start()
print('主')

改良版——生产者消费者模型

复制代码
from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        if res is None:break #收到结束信号则结束
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(q):
    for i in range(10):
        time.sleep(random.randint(1,3))
        res='包子%s' %i
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
    q.put(None) #发送结束信号
if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=(q,))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    c1.start()
    print('主')
复制代码

注意:结束信号None,不一定要由生产者发,主进程里同样可以发,但主进程需要等生产者结束后才应该发送该信号

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res is None:break #收到结束信号则结束
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(q):
for i in range(2):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))

if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=(q,))

#消费者们:即吃货们
c1=Process(target=consumer,args=(q,))

#开始
p1.start()
c1.start()

p1.join()
q.put(None) #发送结束信号
print('主')

主进程在生产者生产完毕后发送结束信号None

复制代码
from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        if res is None:break #收到结束信号则结束
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(q):
    for i in range(2):
        time.sleep(random.randint(1,3))
        res='包子%s' %i
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))

if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=(q,))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    c1.start()

    p1.join()
    q.put(None) #发送结束信号
    print('主')
复制代码

但上述解决方式,在有多个生产者和多个消费者时,我们则需要用一个很low的方式去解决

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res is None:break #收到结束信号则结束
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(name,q):
for i in range(2):
time.sleep(random.randint(1,3))
res='%s%s' %(name,i)
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))

if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=('包子',q))
p2=Process(target=producer,args=('骨头',q))
p3=Process(target=producer,args=('泔水',q))

#消费者们:即吃货们
c1=Process(target=consumer,args=(q,))
c2=Process(target=consumer,args=(q,))

#开始
p1.start()
p2.start()
p3.start()
c1.start()

p1.join() #必须保证生产者全部生产完毕,才应该发送结束信号
p2.join()
p3.join()
q.put(None) #有几个消费者就应该发送几次结束信号None
q.put(None) #发送结束信号
print('主')

多个消费者的例子:有几个消费者就需要发送几次结束信号

复制代码
from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        if res is None:break #收到结束信号则结束
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(name,q):
    for i in range(2):
        time.sleep(random.randint(1,3))
        res='%s%s' %(name,i)
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))

if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=('包子',q))
    p2=Process(target=producer,args=('骨头',q))
    p3=Process(target=producer,args=('泔水',q))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))
    c2=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    p2.start()
    p3.start()
    c1.start()

    p1.join() #必须保证生产者全部生产完毕,才应该发送结束信号
    p2.join()
    p3.join()
    q.put(None) #有几个消费者就应该发送几次结束信号None
    q.put(None) #发送结束信号
    print('主')
posted on 2019-05-09 08:30  斜阳红红  阅读(159)  评论(0编辑  收藏  举报