pytorch基础知识

Pytorch的入门使用

目标

  1. 知道张量和Pytorch中的张量
  2. 知道pytorch中如何创建张量
  3. 知道pytorch中tensor的常见方法
  4. 知道pytorch中tensor的数据类型
  5. 知道pytorch中如何实现tensor在cpu和cuda中转化

1. 张量Tensor

张量是一个统称,其中包含很多类型:

  1. 0阶张量:标量、常数,0-D Tensor
  2. 1阶张量:向量,1-D Tensor
  3. 2阶张量:矩阵,2-D Tensor
  4. 3阶张量
  5. ...
  6. N阶张量

2. Pytorch中创建张量

  1. 使用python中的列表或者序列创建tensor

    torch.tensor([[1., -1.], [1., -1.]])
    tensor([[ 1.0000, -1.0000],
            [ 1.0000, -1.0000]])
    
  2. 使用numpy中的数组创建tensor

    torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))
    tensor([[ 1,  2,  3],
            [ 4,  5,  6]])
    
  3. 使用torch的api创建tensor

    1. torch.empty(3,4)创建3行4列的空的tensor,会用无用数据进行填充

    2. torch.ones([3,4]) 创建3行4列的全为1的tensor

    3. torch.zeros([3,4])创建3行4列的全为0的tensor

    4. torch.rand([3,4]) 创建3行4列的随机值的tensor,随机值的区间是[0, 1)

      >>> torch.rand(2, 3)
      tensor([[ 0.8237,  0.5781,  0.6879],
      [ 0.3816,  0.7249,  0.0998]])
      
    5. torch.randint(low=0,high=10,size=[3,4]) 创建3行4列的随机整数的tensor,随机值的区间是[low, high)

      >>> torch.randint(3, 10, (2, 2))
      tensor([[4, 5],
      	[6, 7]])
      
    6. torch.randn([3,4]) 创建3行4列的随机数的tensor,随机值的分布式均值为0,方差为1

3. Pytorch中tensor的常用方法

  1. 获取tensor中的数据(当tensor中只有一个元素才可用,否则会报错):tensor.item()

    In [10]: a = torch.tensor(np.arange(1)) # 如果是大写Tensor则默认是一个类,默认就是float,要想生成double应该写成DoubleTensor或者直接用tensor
    
    In [11]: a
    Out[11]: tensor([0])
    
    In [12]: a.item()
    Out[12]: 0
    
  2. 转化为numpy数组

    In [55]: z.numpy()
    Out[55]:
    array([[-2.5871205],
           [ 7.3690367],
           [-2.4918075]], dtype=float32)
    
  3. 获取形状:tensor.size()
    获取某一维度的形状:tensor.size(1)

    In [72]: x
    Out[72]:
    tensor([[    1,     2],
            [    3,     4],
            [    5,    10]], dtype=torch.int32)
    
    In [73]: x.size()
    Out[73]: torch.Size([3, 2])
    
  4. 形状改变:tensor.view((3,4))。类似numpy中的reshape,是一种浅拷贝,仅仅是形状发生改变

    In [76]: x.view(2,3)
    Out[76]:
    tensor([[    1,     2,     3],
            [    4,     5,    10]], dtype=torch.int32)
    
  5. 获取阶数:tensor.dim()

    In [77]: x.dim()
    Out[77]: 2
    
  6. 获取最大值:tensor.max()

    In [78]: x.max()
    Out[78]: tensor(10, dtype=torch.int32)
    
  7. 二维转置:tensor.t()

    In [79]: x.t()
    Out[79]:
    tensor([[    1,     3,     5],
            [    2,     4, 	  10]], dtype=torch.int32)
    
    

    高纬转置:tensor.transpose(1,2)/tensor.permute(0,2,1)

    注意:转置和reshape的区别
    转置相当于从另外一个角度看魔方
    而reshape会破坏原本结构

  8. tensor[1,3] 获取tensor中第一行第三列的值

  9. tensor[1,3]=100 对tensor中第一行第三列的位置进行赋值100

  10. tensor的切片

In [101]: x
Out[101]:
tensor([[1.6437, 1.9439, 1.5393],
        [1.3491, 1.9575, 1.0552],
        [1.5106, 1.0123, 1.0961],
        [1.4382, 1.5939, 1.5012],
        [1.5267, 1.4858, 1.4007]])

In [102]: x[:,1]
Out[102]: tensor([1.9439, 1.9575, 1.0123, 1.5939, 1.4858])

4. tensor的数据类型

tensor中的数据类型非常多,常见类型如下:

上图中的Tensor types表示这种type的tensor是其实例

  1. 获取tensor的数据类型:tensor.dtype

    In [80]: x.dtype
    Out[80]: torch.int32
    
  2. 创建数据的时候指定类型

    In [88]: torch.ones([2,3],dtype=torch.float32)
    Out[88]:
    tensor([[9.1167e+18, 0.0000e+00, 7.8796e+15],
            [8.3097e-43, 0.0000e+00, -0.0000e+00]])
    
  3. 类型的修改

    In [17]: a
    Out[17]: tensor([1, 2], dtype=torch.int32)
    
    In [18]: a.type(torch.float)
    Out[18]: tensor([1., 2.])
    
    In [19]: a.double()
    Out[19]: tensor([1., 2.], dtype=torch.float64)
    

5. tensor的其他操作

  1. tensor和tensor相加

    In [94]: x = x.new_ones(5, 3, dtype=torch.float)
    
    In [95]: y = torch.rand(5, 3)
    
    In [96]: x+y
    Out[96]:
    tensor([[1.6437, 1.9439, 1.5393],
            [1.3491, 1.9575, 1.0552],
            [1.5106, 1.0123, 1.0961],
            [1.4382, 1.5939, 1.5012],
            [1.5267, 1.4858, 1.4007]])
    In [98]: torch.add(x,y)
    Out[98]:
    tensor([[1.6437, 1.9439, 1.5393],
            [1.3491, 1.9575, 1.0552],
            [1.5106, 1.0123, 1.0961],
            [1.4382, 1.5939, 1.5012],
            [1.5267, 1.4858, 1.4007]])
    In [99]: x.add(y)
    Out[99]:
    tensor([[1.6437, 1.9439, 1.5393],
            [1.3491, 1.9575, 1.0552],
            [1.5106, 1.0123, 1.0961],
            [1.4382, 1.5939, 1.5012],
            [1.5267, 1.4858, 1.4007]])
    In [100]: x.add_(y)  #带下划线的方法会对x进行就地修改
    Out[100]:
    tensor([[1.6437, 1.9439, 1.5393],
            [1.3491, 1.9575, 1.0552],
            [1.5106, 1.0123, 1.0961],
            [1.4382, 1.5939, 1.5012],
            [1.5267, 1.4858, 1.4007]])
    
    In [101]: x #x发生改变
    Out[101]:
    tensor([[1.6437, 1.9439, 1.5393],
            [1.3491, 1.9575, 1.0552],
            [1.5106, 1.0123, 1.0961],
            [1.4382, 1.5939, 1.5012],
            [1.5267, 1.4858, 1.4007]])
    

    注意:带下划线的方法(比如:add_)会对tensor进行就地修改

  2. tensor和数字操作

    In [97]: x +10
    Out[97]:
    tensor([[11., 11., 11.],
            [11., 11., 11.],
            [11., 11., 11.],
            [11., 11., 11.],
            [11., 11., 11.]])
    
  3. CUDA中的tensor

    CUDA(Compute Unified Device Architecture),是NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。

    torch.cuda这个模块增加了对CUDA tensor的支持,能够在cpu和gpu上使用相同的方法操作tensor

    通过.to方法能够把一个tensor转移到另外一个设备(比如从CPU转到GPU)

    #device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    if torch.cuda.is_available():
        device = torch.device("cuda")          # cuda device对象
        y = torch.ones_like(x, device=device)  # 创建一个在cuda上的tensor
        x = x.to(device)                       # 使用方法把x转为cuda 的tensor
        z = x + y
        print(z)
        print(z.to("cpu", torch.double))       # .to方法也能够同时设置类型
        
    >>tensor([1.9806], device='cuda:0')
    >>tensor([1.9806], dtype=torch.float64)
    

    使用方法:

    1.实例化device:
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    2.tensor.to(device)

通过前面的学习,可以发现torch的各种操作几乎和numpy一样

Pytorch完成线性回归

目标

  1. 知道requires_grad的作用
  2. 知道如何使用backward
  3. 知道如何手动完成线性回归

1. 向前计算

对于pytorch中的一个tensor,如果设置它的属性 .requires_gradTrue,那么它将会追踪对于该张量的所有操作。或者可以理解为,这个tensor是一个参数,后续会被计算梯度,更新该参数。

1.1 计算过程

假设有以下条件(1/4表示求均值,xi中有4个数),使用torch完成其向前计算的过程

\[\begin{align*} &o = \frac{1}{4}\sum_iz_i \\ &z_i = 3(x_i+2)^2\\ 其中:&\\ &z_i|_{x_i=1}=27\\ \end{align*} \]

如果x为参数,需要对其进行梯度的计算和更新

那么,在最开始随机设置x的值的过程中,需要设置他的requires_grad属性为True,其默认值为False

import torch
x = torch.ones(2, 2, requires_grad=True)  #初始化参数x并设置requires_grad=True用来追踪其计算历史
print(x)
#tensor([[1., 1.],
#        [1., 1.]], requires_grad=True)

y = x+2
print(y)
#tensor([[3., 3.],
#        [3., 3.]], grad_fn=<AddBackward0>)

z = y*y*3  #平方x3
print(x)
#tensor([[27., 27.],
#        [27., 27.]], grad_fn=<MulBackward0>) 

out = z.mean() #求均值
print(out)
#tensor(27., grad_fn=<MeanBackward0>)

从上述代码可以看出:

  1. x的requires_grad属性为True
  2. 之后的每次计算都会修改其grad_fn属性,用来记录做过的操作
    1. 通过这个函数和grad_fn能够组成一个和前一小节类似的计算图

1.2 requires_grad和grad_fn

a = torch.randn(2, 2)
a = ((a * 3) / (a - 1))
print(a.requires_grad)  #False
a.requires_grad_(True)  #就地修改
print(a.requires_grad)  #True
b = (a * a).sum()
print(b.grad_fn) # <SumBackward0 object at 0x4e2b14345d21>
with torch.no_gard():
    c = (a * a).sum()  #tensor(151.6830),此时c没有gard_fn
    
print(c.requires_grad) #False

注意:

为了防止跟踪历史记录(和使用内存),可以将代码块包装在with torch.no_grad():中。在评估模型时特别有用,因为模型可能具有requires_grad = True的可训练的参数,但是我们不需要在此过程中对他们进行梯度计算。

2. 梯度计算

对于1.1 中的out而言,我们可以使用backward方法来进行反向传播,计算梯度

out.backward(),此时便能够求出导数\(\frac{d out}{dx}\),调用x.gard能够获取导数值

得到

tensor([[4.5000, 4.5000],
        [4.5000, 4.5000]])

因为:
\( \frac{d(O)}{d(x_i)} = \frac{3}{2}(x_i+2) \)
\(x_i\)等于1时其值为4.5

注意:在输出为一个标量的情况下,我们可以调用输出tensorbackword() 方法,但是在数据是一个向量的时候,调用backward()的时候还需要传入其他参数。

很多时候我们的损失函数都是一个标量,所以这里就不再介绍损失为向量的情况。

loss.backward()就是根据损失函数,对参数(requires_grad=True)的去计算他的梯度,并且把它累加保存到x.gard,此时还并未更新其梯度

注意点:

  1. tensor.data:

    • 在tensor的require_grad=False,tensor.data和tensor等价

    • require_grad=True时,tensor.data仅仅是获取tensor中的数据

  2. tensor.numpy():

    • require_grad=True不能够直接转换,需要使用tensor.detach().numpy()

3. 线性回归实现

下面,我们使用一个自定义的数据,来使用torch实现一个简单的线性回归

假设我们的基础模型就是y = wx+b,其中w和b均为参数,我们使用y = 3x+0.8来构造数据x、y,所以最后通过模型应该能够得出w和b应该分别接近3和0.8

  1. 准备数据
  2. 计算预测值
  3. 计算损失,把参数的梯度置为0,进行反向传播
  4. 更新参数
import torch
import numpy as np
from matplotlib import pyplot as plt


#1. 准备数据 y = 3x+0.8,准备参数
x = torch.rand([50])
y = 3*x + 0.8

w = torch.rand(1,requires_grad=True)
b = torch.rand(1,requires_grad=True)

def loss_fn(y,y_predict):
    loss = (y_predict-y).pow(2).mean()
    for i in [w,b]:
		#每次反向传播前把梯度置为0
        if i.grad is not None:
            i.grad.data.zero_()
    # [i.grad.data.zero_() for i in [w,b] if i.grad is not None]
    loss.backward()
    return loss.data

def optimize(learning_rate):
    # print(w.grad.data,w.data,b.data)
    w.data -= learning_rate* w.grad.data
    b.data -= learning_rate* b.grad.data

for i in range(3000):
    #2. 计算预测值
    y_predict = x*w + b
	
    #3.计算损失,把参数的梯度置为0,进行反向传播 
    loss = loss_fn(y,y_predict)
    
    if i%500 == 0:
        print(i,loss)
    #4. 更新参数w和b
    optimize(0.01)

# 绘制图形,观察训练结束的预测值和真实值
predict =  x*w + b  #使用训练后的w和b计算预测值

plt.scatter(x.data.numpy(), y.data.numpy(),c = "r")
plt.plot(x.data.numpy(), predict.data.numpy())
plt.show()

print("w",w)
print("b",b)

图形效果如下:

打印w和b,可有

w tensor([2.9280], requires_grad=True)
b tensor([0.8372], requires_grad=True)

可知,w和b已经非常接近原来的预设的3和0.8

学习自bilibiliPytorch 入门到精通全教程

posted @ 2021-12-24 16:35  梅雨明夏  阅读(124)  评论(0编辑  收藏  举报