背包问题
01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的重量为W1,W2至Wn,与之相对应的价值为V1V2至Vn。01背包是背包问题中最简单的问题。01背包的约束条件是给定几种物品,每种物品有且只有一个(这个与完全背包不同),并且有价值和重量两个属性。在01背包问题中,因为每种物品只有一个,对于每个物品只需要考虑选与不选两种情况。如果不选择将其放入背包中,则不需要处理。如果选择将其放入背包中,由于不清楚之前放入的物品占据了多大的空间,需要枚举将这个物品放入背包后可能占据背包空间的所有情况。
1. 解析
在解决问题之前,为描述方便,首先定义一些变量:Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积,定义V(i,j):当前背包容量 j,前 i 个物品最佳组合对应的价值,同时背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品选或不选)。
1、建立模型,即求max(V1X1+V2X2+…+VnXn);
2、寻找约束条件,W1X1+W2X2+…+WnXn<capacity;
3、寻找递推关系式,面对当前商品有两种可能性:
包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);
还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}。
其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i),但价值增加了v(i);
由此可以得出递推关系式:
j<w(i) V(i,j)=V(i-1,j)
j>=w(i) V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}
这里需要解释一下,为什么能装的情况下,需要这样求解(这才是本问题的关键所在!):
可以这么理解,如果要到达V(i,j)这一个状态有几种方式?
肯定是两种,第一种是第i件商品没有装进去,第二种是第i件商品装进去了。没有装进去很好理解,就是V(i-1,j);装进去了怎么理解呢?如果装进去第i件商品,那么装入之前是什么状态,肯定是V(i-1,j-w(i))。由于最优性原理(上文讲到),V(i-1,j-w(i))就是前面决策造成的一种状态,后面的决策就要构成最优策略。两种情况进行比较,得出最优。
4、填表,首先初始化边界条件,V(0,j)=V(i,0)=0;
然后一行一行的填表:
如,i=1,j=1,w(1)=2,v(1)=3,有j<w(1),故V(1,1)=V(1-1,1)=0;
又如i=1,j=2,w(1)=2,v(1)=3,有j=w(1),故V(1,2)=max{ V(1-1,2),V(1-1,2-w(1))+v(1) }=max{0,0+3}=3;
如此下去,填到最后一个,i=4,j=8,w(4)=5,v(4)=6,有j>w(4),故V(4,8)=max{ V(4-1,8),V(4-1,8-w(4))+v(4) }=max{9,4+6}=10……
所以填完表如下图:
5、表格填完,最优解即是V(number,capacity)=V(4,8)=10。
2. 设计
当 j >= wi 时, m(i, j) = max { m(i-1, j), m(i-1, j-wi) + vi };
当 j < wi 时, m(i, j) = m(i-1, j)
3. 分析
时间复杂度为O(n)
4. 源码
#include<iostream>
using namespace std;
#include <algorithm>
int w[5] = { 0 , 2 , 3 , 4 , 5 };
int v[5] = { 0 , 3 , 4 , 5 , 6 };
int bagV = 8;
int dp[5][9] = { { 0 } };
int item[5];
void findMax() {
for (int i = 1; i <= 4; i++) {
for (int j = 1; j <= bagV; j++) {
if (j < w[i])
dp[i][j] = dp[i - 1][j];
else
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
}
}
}
void findWhat(int i, int j) {
if (i >= 0) {
if (dp[i][j] == dp[i - 1][j]) {
item[i] = 0;
findWhat(i - 1, j);
}
else if (j - w[i] >= 0 && dp[i][j] == dp[i - 1][j - w[i]] + v[i]) {
item[i] = 1;
findWhat(i - 1, j - w[i]);
}
}
}
void print() {
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 9; j++) {
cout << dp[i][j] << ' ';
}
cout << endl;
}
cout << endl;
for (int i = 0; i < 5; i++)
cout << item[i] << ' ';
cout << endl;
}
int main()
{
findMax();
findWhat(4, 8);
print();
return 0;
}