老生常谈——分布式限流:部分Sentinal源码解读
-
基础知识
HTTP CODE = 429 “请求过多”
A. 限流的类型
-
服务端
-
客户端
限流的标的
-
IP
-
用户
-
...
基本要求
-
准确限制过量的请求。
-
低延时。限流器不能拖慢HTTP响应时间。
-
尽量占用较少的内存。
-
这是一个分布式限流器,可以在多个服务器或者进程之间共享。
-
需要处理异常。当用户的请求被拦截时,给用户展示明确的异常信息。
-
高容错性。如果限流器出现任何问题(比如某个缓存服务器宕机),不能影响整个系统。
-
限流算法
A. 漏桶算法(Leaking Bucket)
基本原理
当一个请求到达时,系统先检查桶是否已满。如果没有,就将请求添加到队列中。否则,丢弃请求。定期从队列中取出请求并进行处理。(控制消费的速率)
B. 代币桶算法(Token Bucket)
基本原理
代币桶是一个有预定义容量的容器。代币按照预定的速率被放入桶中。一旦桶被装满,就不再往里面添加代币。如如果桶满了,多出来的代币就会溢出。(控制进入的速率)
Sentinal实现
// 这个类及其相关的类是近一年才被加入到Sentinal中的,在主流程中未看到直接的调用
class TokenBucket {
private final long maxTokens;
private final long intervalMillis;
private volatile long nextUpdate;
private AtomicLong tokens;
public TokenBucket(long maxTokens, long intervalMillis) {
if (maxTokens <= 0) {
throw new IllegalArgumentException("maxTokens should > 0, but given: " + maxTokens);
}
if (intervalMillis < 1000) {
throw new IllegalArgumentException("intervalMillis should be at least 1000, but given: " + intervalMillis);
}
this.maxTokens = maxTokens;
this.intervalMillis = intervalMillis;
this.nextUpdate = System.currentTimeMillis() / 1000 * 1000 + intervalMillis;
//第一次全量注入token
this.tokens = new AtomicLong(maxTokens);
}
public boolean accept(long now) {
long currTokens;
// 到期自动全量注入token
if (now > nextUpdate) {
currTokens = tokens.get();
if (tokens.compareAndSet(currTokens, maxTokens)) {
nextUpdate = System.currentTimeMillis() / 1000 * 1000 + intervalMillis;
}
}
// 尝试获取token
do {
currTokens = tokens.get();
} while (currTokens > 0 && !tokens.compareAndSet(currTokens, currTokens - 1));
return currTokens > 0;
}
}
优点
算法容易实现。
内存的使用效率高。允许在很短时间内出现突发流量。
只要还有代币,请求就可以通过。
C. 固定窗口计数器算法(Fixed Window Counter)
顾名思义,问题在于,请求如果集中在某个窗口的两侧则可能会出现溢出拒绝。例如每分钟限流5个请求,窗口边界从00->59,则若第01s进入5个请求,第58s进入5个请求,后五个请求将被拒绝。
D. 滑动窗口(LeapArray - Sentinal)
LeapArray提供窗口操作的核心API,结合不同的Bucket(提供统计能力)泛型实现可以演变出不同的子类
// com.alibaba.csp.sentinel.slots.statistic.base.LeapArray -> 提供了窗口相关的核心api
public abstract class LeapArray<T> {
protected int windowLengthInMs;
protected int sampleCount;
protected int intervalInMs;
private double intervalInSecond;
protected final AtomicReferenceArray<WindowWrap<T>> array;
/**
* The conditional (predicate) update lock is used only when current bucket is deprecated.
*/
private final ReentrantLock updateLock = new ReentrantLock();
/**
* The total bucket count is: {@code sampleCount = intervalInMs / windowLengthInMs}.
*
* @param sampleCount bucket count of the sliding window
* @param intervalInMs the total time interval of this {@link LeapArray} in milliseconds
*/
public LeapArray(int sampleCount, int intervalInMs) {
AssertUtil.isTrue(sampleCount > 0, "bucket count is invalid: " + sampleCount);
AssertUtil.isTrue(intervalInMs > 0, "total time interval of the sliding window should be positive");
AssertUtil.isTrue(intervalInMs % sampleCount == 0, "time span needs to be evenly divided");
this.windowLengthInMs = intervalInMs / sampleCount;
this.intervalInMs = intervalInMs;
this.intervalInSecond = intervalInMs / 1000.0;
this.sampleCount = sampleCount;
this.array = new AtomicReferenceArray<>(sampleCount);
}
/**
* Get the bucket at current timestamp.
*
* @return the bucket at current timestamp
*/
public WindowWrap<T> currentWindow() {
return currentWindow(TimeUtil.currentTimeMillis());
}
/**
* Create a new statistic value for bucket.
*
* @param timeMillis current time in milliseconds
* @return the new empty bucket
*/
public abstract T newEmptyBucket(long timeMillis);
/**
* Reset given bucket to provided start time and reset the value.
*
* @param startTime the start time of the bucket in milliseconds
* @param windowWrap current bucket
* @return new clean bucket at given start time
*/
protected abstract WindowWrap<T> resetWindowTo(WindowWrap<T> windowWrap, long startTime);
private int calculateTimeIdx(/*@Valid*/ long timeMillis) {
long timeId = timeMillis / windowLengthInMs;
// Calculate current index so we can map the timestamp to the leap array.
return (int)(timeId % array.length());
}
protected long calculateWindowStart(/*@Valid*/ long timeMillis) {
return timeMillis - timeMillis % windowLengthInMs;
}
/**
* Get bucket item at provided timestamp.
*
* @param timeMillis a valid timestamp in milliseconds
* @return current bucket item at provided timestamp if the time is valid; null if time is invalid
*/
public WindowWrap<T> currentWindow(long timeMillis) {
if (timeMillis < 0) {
return null;
}
int idx = calculateTimeIdx(timeMillis);
// Calculate current bucket start time.
long windowStart = calculateWindowStart(timeMillis);
/*
* Get bucket item at given time from the array.
*
* (1) Bucket is absent, then just create a new bucket and CAS update to circular array.
* (2) Bucket is up-to-date, then just return the bucket.
* (3) Bucket is deprecated, then reset current bucket.
*/
while (true) {
WindowWrap<T> old = array.get(idx);
if (old == null) {
/*
* B0 B1 B2 NULL B4
* ||_______|_______|_______|_______|_______||___
* 200 400 600 800 1000 1200 timestamp
* ^
* time=888
* bucket is empty, so create new and update
*
* If the old bucket is absent, then we create a new bucket at {@code windowStart},
* then try to update circular array via a CAS operation. Only one thread can
* succeed to update, while other threads yield its time slice.
*/
WindowWrap<T> window = new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
if (array.compareAndSet(idx, null, window)) {
// Successfully updated, return the created bucket.
return window;
} else {
// Contention failed, the thread will yield its time slice to wait for bucket available.
Thread.yield();
}
} else if (windowStart == old.windowStart()) {
/*
* B0 B1 B2 B3 B4
* ||_______|_______|_______|_______|_______||___
* 200 400 600 800 1000 1200 timestamp
* ^
* time=888
* startTime of Bucket 3: 800, so it's up-to-date
*
* If current {@code windowStart} is equal to the start timestamp of old bucket,
* that means the time is within the bucket, so directly return the bucket.
*/
return old;
} else if (windowStart > old.windowStart()) {
/*
* (old)
* B0 B1 B2 NULL B4
* |_______||_______|_______|_______|_______|_______||___
* ... 1200 1400 1600 1800 2000 2200 timestamp
* ^
* time=1676
* startTime of Bucket 2: 400, deprecated, should be reset
*
* If the start timestamp of old bucket is behind provided time, that means
* the bucket is deprecated. We have to reset the bucket to current {@code windowStart}.
* Note that the reset and clean-up operations are hard to be atomic,
* so we need a update lock to guarantee the correctness of bucket update.
*
* The update lock is conditional (tiny scope) and will take effect only when
* bucket is deprecated, so in most cases it won't lead to performance loss.
*/
if (updateLock.tryLock()) {
try {
// Successfully get the update lock, now we reset the bucket.
return resetWindowTo(old, windowStart);
} finally {
updateLock.unlock();
}
} else {
// Contention failed, the thread will yield its time slice to wait for bucket available.
Thread.yield();
}
} else if (windowStart < old.windowStart()) {
// Should not go through here, as the provided time is already behind.
return new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
}
}
}
}
-
限流计数与规则
限流计数
-
单机:本地LoadingCache等支持过期时间的表
-
分布式:redis
- 参见:Better Rate Limiting With Redis Sorted Sets,利用ZSET来避免竞态条件下,系统性能被锁瓶颈影响。(简单来说就是把单变量的get -> add 1 的操作变成 add时间戳,通过count时间戳的数量来确认是否限流)
限流策略
-
拒绝
-
放入消息队列,后续消费
-
Sentinal源码分析
核心抽象
-
资源
-
规则 -> FlowRule.class
-
流控、降级、热点、授权
请求是如何被统计的?
调用链
com.alibaba.csp.sentinel.CtSph#entry(java.lang.String)
// 业务侧的起点,会初始化出调用链,并且Context类的资源是保存在ThreadLocal中的,
// 也就是再一次调用中复用的同一个 Context,因此可以通过Context的来自动构建Node树
com.alibaba.csp.sentinel.slotchain.DefaultProcessorSlotChain#entry
// ProcessorSlot的调用链,顺序依照
public static final int ORDER_NODE_SELECTOR_SLOT = -10000;
public static final int ORDER_CLUSTER_BUILDER_SLOT = -9000;
public static final int ORDER_LOG_SLOT = -8000;
public static final int ORDER_STATISTIC_SLOT = -7000;
public static final int ORDER_AUTHORITY_SLOT = -6000;
public static final int ORDER_SYSTEM_SLOT = -5000;
public static final int ORDER_FLOW_SLOT = -2000;
public static final int ORDER_DEFAULT_CIRCUIT_BREAKER_SLOT = -1500;
com.alibaba.csp.sentinel.slots.nodeselector.NodeSelectorSlot#entry
// 会尝试初始化这次调用的Node类,Node类用于统计请求指标
public void entry(Context context, ResourceWrapper resourceWrapper, Object obj, int count, boolean prioritized, Object... args)
throws Throwable {
/*
* It's interesting that we use context name rather resource name as the map key.
*
* Remember that same resource({@link ResourceWrapper#equals(Object)}) will share
* the same {@link ProcessorSlotChain} globally, no matter in which context. So if
* code goes into {@link #entry(Context, ResourceWrapper, DefaultNode, int, Object...)},
* the resource name must be same but context name may not.
*
* If we use {@link com.alibaba.csp.sentinel.SphU#entry(String resource)} to
* enter same resource in different context, using context name as map key can
* distinguish the same resource. In this case, multiple {@link DefaultNode}s will be created
* of the same resource name, for every distinct context (different context name) each.
*
* Consider another question. One resource may have multiple {@link DefaultNode},
* so what is the fastest way to get total statistics of the same resource?
* The answer is all {@link DefaultNode}s with same resource name share one
* {@link ClusterNode}. See {@link ClusterBuilderSlot} for detail.
*/
DefaultNode node = map.get(context.getName());
if (node == null) {
synchronized (this) {
node = map.get(context.getName());
if (node == null) {
node = new DefaultNode(resourceWrapper, null);
// DefaultNode具有统计功能
HashMap<String, DefaultNode> cacheMap = new HashMap<String, DefaultNode>(map.size());
cacheMap.putAll(map);
cacheMap.put(context.getName(), node);
map = cacheMap;
// Build invocation tree
// 最上层的调用发起处在此处将会添加到entranceNode的child字段中,
// 非最上层的调用发起处则会添加到curNode的child字段中
((DefaultNode) context.getLastNode()).addChild(node);
}
}
}
context.setCurNode(node);
fireEntry(context, resourceWrapper, node, count, prioritized, args);
}
com.alibaba.csp.sentinel.slots.statistic.StatisticSlot#entry
// 而后会通过这个slow进行统计, 这也就是为什么最先执行NodeSelectorSlot,然后再是StatisticSlot
// 最后再是一些业务规则
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
boolean prioritized, Object... args) throws Throwable {
try {
// Do some checking.
fireEntry(context, resourceWrapper, node, count, prioritized, args);
// Request passed, add thread count and pass count.
node.increaseThreadNum();
node.addPassRequest(count);
if (context.getCurEntry().getOriginNode() != null) {
// Add count for origin node.
context.getCurEntry().getOriginNode().increaseThreadNum();
context.getCurEntry().getOriginNode().addPassRequest(count);
}
if (resourceWrapper.getEntryType() == EntryType.IN) {
// Add count for global inbound entry node for global statistics.
Constants.ENTRY_NODE.increaseThreadNum();
Constants.ENTRY_NODE.addPassRequest(count);
}
// Handle pass event with registered entry callback handlers.
for (ProcessorSlotEntryCallback<DefaultNode> handler : StatisticSlotCallbackRegistry.getEntryCallbacks()) {
handler.onPass(context, resourceWrapper, node, count, args);
}
} catch (PriorityWaitException ex) {
node.increaseThreadNum();
if (context.getCurEntry().getOriginNode() != null) {
// Add count for origin node.
context.getCurEntry().getOriginNode().increaseThreadNum();
}
if (resourceWrapper.getEntryType() == EntryType.IN) {
// Add count for global inbound entry node for global statistics.
Constants.ENTRY_NODE.increaseThreadNum();
}
// Handle pass event with registered entry callback handlers.
for (ProcessorSlotEntryCallback<DefaultNode> handler : StatisticSlotCallbackRegistry.getEntryCallbacks()) {
handler.onPass(context, resourceWrapper, node, count, args);
}
} catch (BlockException e) {
// Blocked, set block exception to current entry.
context.getCurEntry().setBlockError(e);
// Add block count.
node.increaseBlockQps(count);
if (context.getCurEntry().getOriginNode() != null) {
context.getCurEntry().getOriginNode().increaseBlockQps(count);
}
if (resourceWrapper.getEntryType() == EntryType.IN) {
// Add count for global inbound entry node for global statistics.
Constants.ENTRY_NODE.increaseBlockQps(count);
}
// Handle block event with registered entry callback handlers.
for (ProcessorSlotEntryCallback<DefaultNode> handler : StatisticSlotCallbackRegistry.getEntryCallbacks()) {
handler.onBlocked(e, context, resourceWrapper, node, count, args);
}
throw e;
} catch (Throwable e) {
// Unexpected internal error, set error to current entry.
context.getCurEntry().setError(e);
throw e;
}
}
限流规则是如何被apply的?
核心责任链处理器接口
public interface ProcessorSlot<T> {
/**
* Entrance of this slot.
*
* @param context current {@link Context}
* @param resourceWrapper current resource
* @param param generics parameter, usually is a {@link com.alibaba.csp.sentinel.node.Node}
* @param count tokens needed
* @param prioritized whether the entry is prioritized
* @param args parameters of the original call
* @throws Throwable blocked exception or unexpected error
*/
void entry(Context context, ResourceWrapper resourceWrapper, T param, int count, boolean prioritized,
Object... args) throws Throwable;
/**
* Means finish of {@link #entry(Context, ResourceWrapper, Object, int, boolean, Object...)}.
*
* @param context current {@link Context}
* @param resourceWrapper current resource
* @param obj relevant object (e.g. Node)
* @param count tokens needed
* @param prioritized whether the entry is prioritized
* @param args parameters of the original call
* @throws Throwable blocked exception or unexpected error
*/
void fireEntry(Context context, ResourceWrapper resourceWrapper, Object obj, int count, boolean prioritized,
Object... args) throws Throwable;
/**
* Exit of this slot.
*
* @param context current {@link Context}
* @param resourceWrapper current resource
* @param count tokens needed
* @param args parameters of the original call
*/
void exit(Context context, ResourceWrapper resourceWrapper, int count, Object... args);
/**
* Means finish of {@link #exit(Context, ResourceWrapper, int, Object...)}.
*
* @param context current {@link Context}
* @param resourceWrapper current resource
* @param count tokens needed
* @param args parameters of the original call
*/
void fireExit(Context context, ResourceWrapper resourceWrapper, int count, Object... args);
}
// 责任链的处理顺序 授权规则 -> 系统规则 -> 热点规则 -> 流量控制规则 -> 降级规则
/**
* Order of default processor slots
*/
public static final int ORDER_NODE_SELECTOR_SLOT = -10000;
public static final int ORDER_CLUSTER_BUILDER_SLOT = -9000;
public static final int ORDER_LOG_SLOT = -8000;
public static final int ORDER_STATISTIC_SLOT = -7000;
public static final int ORDER_AUTHORITY_SLOT = -6000;
public static final int ORDER_SYSTEM_SLOT = -5000;
public static final int ORDER_FLOW_SLOT = -2000;
public static final int ORDER_DEFAULT_CIRCUIT_BREAKER_SLOT = -1500;
public static final int ORDER_DEGRADE_SLOT = -1000;
整体设计上是通过实现不同的XXXSlot类(提供一些模板性质的方法),并为每个类关联不同的XXXRule来实现级联的规则校验。例如在热点控制这个Slot中,可以为某个特定的Api资源配置多个不同的热点参数值,这些不同的热点参数就会具象为不同的ParamFlowRule
FlowSlot
@Spi(order = Constants.ORDER_FLOW_SLOT)
public class FlowSlot extends AbstractLinkedProcessorSlot<DefaultNode> {
private final FlowRuleChecker checker;
public FlowSlot() {
this(new FlowRuleChecker());
}
/**
* Package-private for test.
*
* @param checker flow rule checker
* @since 1.6.1
*/
FlowSlot(FlowRuleChecker checker) {
AssertUtil.notNull(checker, "flow checker should not be null");
this.checker = checker;
}
@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
boolean prioritized, Object... args) throws Throwable {
checkFlow(resourceWrapper, context, node, count, prioritized);
fireEntry(context, resourceWrapper, node, count, prioritized, args);
}
void checkFlow(ResourceWrapper resource, Context context, DefaultNode node, int count, boolean prioritized)
throws BlockException {
checker.checkFlow(ruleProvider, resource, context, node, count, prioritized);
}
@Override
public void exit(Context context, ResourceWrapper resourceWrapper, int count, Object... args) {
fireExit(context, resourceWrapper, count, args);
}
private final Function<String, Collection<FlowRule>> ruleProvider = new Function<String, Collection<FlowRule>>() {
@Override
public Collection<FlowRule> apply(String resource) {
return FlowRuleManager.getFlowRules(resource);
}
};
}
可以看到核心的规则逻辑是体现在FlowRule中的,通过FlowRuleManager获取到。校验的时候提供了两种机制,集群和本地
// FlowRuleChecker.class
public boolean canPassCheck(/*@NonNull*/ FlowRule rule, Context context, DefaultNode node, int acquireCount,
boolean prioritized) {
String limitApp = rule.getLimitApp();
if (limitApp == null) {
return true;
}
if (rule.isClusterMode()) {
return passClusterCheck(rule, context, node, acquireCount, prioritized);
}
return passLocalCheck(rule, context, node, acquireCount, prioritized);
}
rater主要有以上四种实现,底层基本是依赖滑动窗口算法
Why?
滑动窗口可以更方便的列出一些统计信息,从而进行额外的限流功能的扩展
令牌桶算法还需要维护token的注入速度,并且只能for限流使用。而在其他场景,还是需要滑动窗口相关的数据结构来统计一些系统指标
DefualtController
// 依赖defaultNode中统计出的qps数,本质是滑动窗口统计的结果
@Override
public boolean canPass(Node node, int acquireCount, boolean prioritized) {
int curCount = avgUsedTokens(node);
if (curCount + acquireCount > count) {
if (prioritized && grade == RuleConstant.FLOW_GRADE_QPS) {
long currentTime;
long waitInMs;
currentTime = TimeUtil.currentTimeMillis();
waitInMs = node.tryOccupyNext(currentTime, acquireCount, count);
if (waitInMs < OccupyTimeoutProperty.getOccupyTimeout()) {
node.addWaitingRequest(currentTime + waitInMs, acquireCount);
node.addOccupiedPass(acquireCount);
sleep(waitInMs);
// PriorityWaitException indicates that the request will pass after waiting for {@link @waitInMs}.
throw new PriorityWaitException(waitInMs);
}
}
return false;
}
return true;
}
WarmUpLimiter
@Override
public boolean canPass(Node node, int acquireCount, boolean prioritized) {
// 1. 获取前一个统计周期的 QPS
long previousQps = (long) node.previousPassQps();
// 同步令牌,基于之前的 QPS 更新当前存储的令牌数
syncToken(previousQps);
long currentTime = TimeUtil.currentTimeMillis();
long restToken = storedTokens.get(); // 获取当前存储的令牌数
long costTime = 0; // 计算本次请求需要的时间
long expectedTime = 0; // 预期执行时间
// 2. 令牌数超过警戒值,说明系统处于预热阶段
if (restToken >= warningToken) {
// 计算超出警戒值的令牌数
long aboveToken = restToken - warningToken;
// 根据斜率计算预热期间的 QPS
// warmingQps 会随着 restToken 的减少而增加
double warmingQps = Math.nextUp(1.0 / (aboveToken * slope + 1.0 / count));
// 计算按照预热 QPS 处理请求需要的时间
costTime = Math.round(1.0 * (acquireCount) / warmingQps * 1000);
} else {
// 3. 令牌数低于警戒值,按照目标 QPS 处理
costTime = Math.round(1.0 * (acquireCount) / count * 1000);
}
// 4. 计算预期完成时间
expectedTime = costTime + latestPassedTime.get();
// 5. 如果预期完成时间小于当前时间,说明可以立即处理
if (expectedTime <= currentTime) {
latestPassedTime.set(currentTime);
return true;
} else {
// 6. 需要等待的情况
long waitTime = costTime + latestPassedTime.get() - currentTime;
// 等待时间超过最大超时时间,直接拒绝
if (waitTime > timeoutInMs) {
return false;
} else {
// 7. 更新最新通过时间并等待
long oldTime = latestPassedTime.addAndGet(costTime);
try {
waitTime = oldTime - TimeUtil.currentTimeMillis();
if (waitTime > timeoutInMs) {
latestPassedTime.addAndGet(-costTime);
return false;
}
if (waitTime > 0) {
Thread.sleep(waitTime);
}
return true;
} catch (InterruptedException e) {
}
}
}
return false;
}
}
ParamFlowSlot
主要的作用是可以根据一些请求的参数值,进行限流,比如促销时一些热点的品类
// com.alibaba.csp.sentinel.slots.block.flow.param.ParamFlowSlot#checkFlow
void checkFlow(ResourceWrapper resourceWrapper, int count, Object... args) throws BlockException {
if (args == null) {
return;
}
if (!ParamFlowRuleManager.hasRules(resourceWrapper.getName())) {
return;
}
List<ParamFlowRule> rules = ParamFlowRuleManager.getRulesOfResource(resourceWrapper.getName());
for (ParamFlowRule rule : rules) {
applyRealParamIdx(rule, args.length);
// Initialize the parameter metrics.
ParameterMetricStorage.initParamMetricsFor(resourceWrapper, rule);
if (!ParamFlowChecker.passCheck(resourceWrapper, rule, count, args)) {
String triggeredParam = "";
if (args.length > rule.getParamIdx()) {
Object value = args[rule.getParamIdx()];
// Assign actual value with the result of paramFlowKey method
if (value instanceof ParamFlowArgument) {
value = ((ParamFlowArgument) value).paramFlowKey();
}
triggeredParam = String.valueOf(value);
}
throw new ParamFlowException(resourceWrapper.getName(), triggeredParam, rule);
}
}
}
//集群模式,使用本地模式作为兜底策略。集群模式依赖中心化的限流服务,SDK中也提供了嵌入的服务端服务
private static boolean passClusterCheck(FlowRule rule, Context context, DefaultNode node, int acquireCount,
boolean prioritized) {
try {
TokenService clusterService = pickClusterService();
if (clusterService == null) {
return fallbackToLocalOrPass(rule, context, node, acquireCount, prioritized);
}
long flowId = rule.getClusterConfig().getFlowId();
TokenResult result = clusterService.requestToken(flowId, acquireCount, prioritized);
return applyTokenResult(result, rule, context, node, acquireCount, prioritized);
// If client is absent, then fallback to local mode.
} catch (Throwable ex) {
RecordLog.warn("[FlowRuleChecker] Request cluster token unexpected failed", ex);
}
// Fallback to local flow control when token client or server for this rule is not available.
// If fallback is not enabled, then directly pass.
return fallbackToLocalOrPass(rule, context, node, acquireCount, prioritized);
}
// 本地模式则直接使用SDK中的类进行校验,核心逻辑在Rater字段上,rater是一系列实现了com.alibaba.csp.sentinel.slots.block.flow.TrafficShapingController
// 接口的类
private static boolean passLocalCheck(FlowRule rule, Context context, DefaultNode node, int acquireCount,
boolean prioritized) {
Node selectedNode = selectNodeByRequesterAndStrategy(rule, context, node);
if (selectedNode == null) {
return true;
}
return rule.getRater().canPass(selectedNode, acquireCount, prioritized);
}
SystemSlot
主要是check一些系统层面的宏观统计指标,如全局的qps,cpu利用率,load,线程数等等
@Spi(order = Constants.ORDER_SYSTEM_SLOT)
public class SystemSlot extends AbstractLinkedProcessorSlot<DefaultNode> {
@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
boolean prioritized, Object... args) throws Throwable {
SystemRuleManager.checkSystem(resourceWrapper, count);
fireEntry(context, resourceWrapper, node, count, prioritized, args);
}
@Override
public void exit(Context context, ResourceWrapper resourceWrapper, int count, Object... args) {
fireExit(context, resourceWrapper, count, args);
}
}
// SystemRuleManager.checkSystem 中的一部端核心逻辑
public static void checkSystem(ResourceWrapper resourceWrapper, int count) throws BlockException {
if (resourceWrapper == null) {
return;
}
// Ensure the checking switch is on.
if (!checkSystemStatus.get()) {
return;
}
// for inbound traffic only
if (resourceWrapper.getEntryType() != EntryType.IN) {
return;
}
// total qps
double currentQps = Constants.ENTRY_NODE.passQps();
if (currentQps + count > qps) {
throw new SystemBlockException(resourceWrapper.getName(), "qps");
}
// total thread
int currentThread = Constants.ENTRY_NODE.curThreadNum();
if (currentThread > maxThread) {
throw new SystemBlockException(resourceWrapper.getName(), "thread");
}
double rt = Constants.ENTRY_NODE.avgRt();
if (rt > maxRt) {
throw new SystemBlockException(resourceWrapper.getName(), "rt");
}
// load. BBR algorithm.
if (highestSystemLoadIsSet && getCurrentSystemAvgLoad() > highestSystemLoad) {
if (!checkBbr(currentThread)) {
throw new SystemBlockException(resourceWrapper.getName(), "load");
}
}
// cpu usage
if (highestCpuUsageIsSet && getCurrentCpuUsage() > highestCpuUsage) {
throw new SystemBlockException(resourceWrapper.getName(), "cpu");
}
}
AuthoritySlot
主要是一些白名单和黑名单的逻辑
// 逻辑也非常简单,直接获取具体的auth规则去校验即可
@Spi(order = Constants.ORDER_AUTHORITY_SLOT)
public class AuthoritySlot extends AbstractLinkedProcessorSlot<DefaultNode> {
@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count, boolean prioritized, Object... args)
throws Throwable {
checkBlackWhiteAuthority(resourceWrapper, context);
fireEntry(context, resourceWrapper, node, count, prioritized, args);
}
@Override
public void exit(Context context, ResourceWrapper resourceWrapper, int count, Object... args) {
fireExit(context, resourceWrapper, count, args);
}
void checkBlackWhiteAuthority(ResourceWrapper resource, Context context) throws AuthorityException {
List<AuthorityRule> rules = AuthorityRuleManager.getRules(resource.getName());
if (rules == null) {
return;
}
for (AuthorityRule rule : rules) {
if (!AuthorityRuleChecker.passCheck(rule, context)) {
throw new AuthorityException(context.getOrigin(), rule);
}
}
}
}
CircuitBreakerSlot
和熔断降级相关的职责,围绕状态机OPEN, HALF_OPEN和CLOSE展开
@Spi(order = Constants.ORDER_DEFAULT_CIRCUIT_BREAKER_SLOT)
public class DefaultCircuitBreakerSlot extends AbstractLinkedProcessorSlot<DefaultNode> {
@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
boolean prioritized, Object... args) throws Throwable {
performChecking(context, resourceWrapper);
fireEntry(context, resourceWrapper, node, count, prioritized, args);
}
private void performChecking(Context context, ResourceWrapper r) throws BlockException {
// If user has set a degrade rule for the resource, the default rule will not be activated
if (DegradeRuleManager.hasConfig(r.getName())) {
return;
}
List<CircuitBreaker> circuitBreakers = DefaultCircuitBreakerRuleManager.getDefaultCircuitBreakers(r.getName());
if (circuitBreakers == null || circuitBreakers.isEmpty()) {
return;
}
for (CircuitBreaker cb : circuitBreakers) {
if (!cb.tryPass(context)) {
throw new DegradeException(cb.getRule().getLimitApp(), cb.getRule());
}
}
}
@Override
public void exit(Context context, ResourceWrapper r, int count, Object... args) {
Entry curEntry = context.getCurEntry();
if (curEntry.getBlockError() != null) {
fireExit(context, r, count, args);
return;
}
if (DegradeRuleManager.hasConfig(r.getName())) {
fireExit(context, r, count, args);
return;
}
List<CircuitBreaker> circuitBreakers = DefaultCircuitBreakerRuleManager.getDefaultCircuitBreakers(r.getName());
if (circuitBreakers == null || circuitBreakers.isEmpty()) {
fireExit(context, r, count, args);
return;
}
if (curEntry.getBlockError() == null) {
// passed request
for (CircuitBreaker circuitBreaker : circuitBreakers) {
circuitBreaker.onRequestComplete(context);
}
}
fireExit(context, r, count, args);
}
}
// OPEN 代表启用熔断, HALF_OPEN时如果抛出异常则重新回到OPEN,否则变为CLOSE,CLOSE代表不启用熔断规则
参考引用
-
搞定系统设计:面试敲开大厂的门
-
Sentinal源码