[JSOI2008] [BZOJ1567] Blue Mary的战役地图 解题报告 (hash)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1567
Description
Blue Mary最近迷上了玩Starcraft(星际争霸) 的RPG游戏。她正在设法寻找更多的战役地图以进一步提高自己的水平。 由于Blue Mary的技术已经达到了一定的高度,因此,对于用同一种打法能够通过的战役地图,她只需要玩一张,她就能了解这一类战役的打法,然后她就没有兴趣再玩儿这一类地图了。而网上流传的地图有很多都是属于同一种打法,因此Blue Mary需要你写一个程序,来帮助她判断哪些地图是属于同一类的。 具体来说,Blue Mary已经将战役地图编码为n*n的矩阵,矩阵的每个格子里面是一个32位(有符号)正整数。对于两个矩阵,他们的相似程度定义为他们的最大公共正方形矩阵的边长。两个矩阵的相似程度越大,这两张战役地图就越有可能是属于同一类的。
Input
第一行包含一个正整数n。 以下n行,每行包含n个正整数,表示第一张战役地图的代表矩阵。 再以下n行,每行包含n个正整数,表示第二张战役地图的代表矩阵。
Output
仅包含一行。这一行仅有一个正整数,表示这两个矩阵的相似程度。
Sample Input
3
1 2 3
4 5 6
7 8 9
5 6 7
8 9 1
2 3 4
1 2 3
4 5 6
7 8 9
5 6 7
8 9 1
2 3 4
Sample Output
2
显然我们可以二分最大正方形的边长。
二分边长v,然后对于A,B中的每一个边长为v的正方形计算出它的hash值;排序对于B数组在A数组(二者都是hash数组)上lower_bound查找,若是找到和B数组中重复的,说明当前存在正方形满足当前二分的边长,return true,反之return false
总复杂度O(n2 log n)
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #define ll long long using namespace std; const int mo=20030921521; const int N=52; ll n; ll a[N][N],b[N][N]; unsigned int a1[N][N],b1[N][N],a2[N][N],b2[N][N],A[N*N],B[N*N]; bool check(ll v) { ll p=1000000007,pm=1; for (int i=1;i<=N;i++) pm=pm*p%mo; memset(a1,0,sizeof(a1)); memset(b1,0,sizeof(b1)); memset(a2,0,sizeof(a2)); memset(b2,0,sizeof(b2)); memset(A,0,sizeof(A)); memset(B,0,sizeof(B)); for (int i=1;i<=n;i++) for (int j=1;j+v-1<=n;j++) for (int k=1;k<=v;k++) a1[i][j]=(a1[i][j]*p+a[i][j+k-1])%mo; for (int i=1;i+v-1<=n;i++) for (int j=1;j+v-1<=n;j++) for (int k=1;k<=v;k++) a2[i][j]=(a2[i][j]*pm+a1[i+k-1][j])%mo; for (int i=1;i<=n;i++) for (int j=1;j+v-1<=n;j++) for (int k=1;k<=v;k++) b1[i][j]=(b1[i][j]*p+b[i][j+k-1])%mo; for (int i=1;i+v-1<=n;i++) for (int j=1;j+v-1<=n;j++) for (int k=1;k<=v;k++) b2[i][j]=(b2[i][j]*pm+b1[i+k-1][j])%mo; int tot=0; for (int i=1;i+v-1<=n;i++) for (int j=1;j+v-1<=n;j++) A[++tot]=a2[i][j],B[tot]=b2[i][j]; sort(A+1,A+1+tot); sort(B+1,B+1+tot); for (int i=1;i<=tot;i++) if (A[lower_bound(A+1,A+1+tot,B[i])-A]==B[i]) return true; return false; } int main() { scanf("%lld",&n); for (int i=1;i<=n;i++) for (int j=1;j<=n;j++) scanf("%lld",&a[i][j]); for (int i=1;i<=n;i++) for (int j=1;j<=n;j++) scanf("%lld",&b[i][j]); ll l=0,r=N,ans=0,mid; while (l<=r) { mid=l+r>>1; if (check(mid)) l=mid+1,ans=mid; else r=mid-1; } printf("%lld\n",ans); return 0; }
星星之火,终将成燎原之势