猫狗识别——PyTorch

猫狗识别


 

数据集下载:

  网盘链接:https://pan.baidu.com/s/1SlNAPf3NbgPyf93XluM7Fg

  提取密码:hpn4


 

1. 要导入的包

import os
import time
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils import data
from torchvision import transforms as T
from PIL import Image
import

2. 模型配置

###################################
# SETTINGS
###################################

class Config(object):
    
    batch_size = 32
    max_epoch = 30
    num_workers = 2
    lr = 0.001
    lr_decay = 0.95
    weight_decay = 0.0001
    
    train_data_root = '/home/dong/Documents/DATASET/train'
    test_data_root = '/home/dong/Documents/DATASET/test'
    
    load_dict_path = None

opt = Config()
SETTINGS

3. 选择DEVICE

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'

 4. 数据集

###################################
# DATASETS
###################################


class DogCatDataset(data.Dataset):
    
    def __init__(self, root, transforms=None, train=True, test=False):
        
        super(DogCatDataset, self).__init__()
        
        imgs = [os.path.join(root, img) for img in os.listdir(root)]
        
        
        np.random.seed(10000)
        np.random.permutation(imgs)
        
        len_imgs = len(imgs)
        
        self.test = test
        
        # -----------------------------------------------------------------------------------------
        # 因为在猫狗数据集中,只有训练集和测试集,但是我们还需要验证集,因此从原始训练集中分离出30%的数据
        # 用作验证集。
        # ------------------------------------------------------------------------------------------
        if self.test:
            self.imgs = imgs
        elif train:
            self.imgs = imgs[: int(0.7*len_imgs)]
        else:
            self.imgs = imgs[int(0.7*len_imgs): ]
            
        
        if transforms is None:
            
            normalize = T.Normalize(mean=[0.485, 0.456, 0.406],
                                   std=[0.229, 0.224, 0.225])
            
            if self.test or not train:
                self.transforms = T.Compose([
                    T.Scale(224),
                    T.CenterCrop(224),
                    T.ToTensor(),
                    normalize
                ])
            else:
                self.transforms = T.Compose([
                    T.Scale(246),
                    T.RandomCrop(224),
                    T.RandomHorizontalFlip(),
                    T.ToTensor(),
                    normalize
                ])
            
        
    def __getitem__(self, index):
        
        # 当前要获取图像的路径
        img_path = self.imgs[index]
        
        if self.test:
            img_label = int(img_path.split('.')[-2].split('/')[-1])
        else:
            img_label = 1 if 'dog' in img_path.split('/')[-1] else 0
            
        img_data = Image.open(img_path)
        img_data = self.transforms(img_data)
        
        return img_data, img_label
    
    def __len__(self):
        return len(self.imgs)


train_dataset = DogCatDataset(root=opt.train_data_root, train=True)   # train=True, test=False -> 训练集
val_dataset = DogCatDataset(root=opt.train_data_root, train=False)    # train=False, test=False -> 验证集
test_dataset = DogCatDataset(root=opt.test_data_root, test=True)      # test=True -> 测试集

train_dataloader = DataLoader(dataset=train_dataset,
                              shuffle=True,
                              batch_size=opt.batch_size,
                              num_workers = opt.num_workers)
val_dataloader = DataLoader(dataset=val_dataset,
                            shuffle=False,
                            batch_size=opt.batch_size,
                            num_workers = opt.num_workers)
test_dataloader = DataLoader(dataset=test_dataset,
                             shuffle=False,
                             batch_size=opt.batch_size,
                             num_workers = opt.num_workers)
DATASETS

5. 检查数据集的 shape

# ------------------------------------------------
#  CHECKING THE DATASETS
# ------------------------------------------------
print("Training set:")
for  images, labels in train_dataloader:
    print('Image Batch Dimensions:', images.size())
    print('Label Batch Dimensions:', labels.size())
    break

print("Validation set:")
for  images, labels in val_dataloader:
    print('Image Batch Dimensions:', images.size())
    print('Label Batch Dimensions:', labels.size())
    break
    
print("Testing set:")
for  images, labels in test_dataloader:
    print('Image Batch Dimensions:', images.size())
    print('Label Batch Dimensions:', labels.size())
    break
View Code

eg:

Training set:
Image Batch Dimensions: torch.Size([32, 3, 224, 224])
Label Batch Dimensions: torch.Size([32])
Validation set:
Image Batch Dimensions: torch.Size([32, 3, 224, 224])
Label Batch Dimensions: torch.Size([32])
Testing set:
Image Batch Dimensions: torch.Size([32, 3, 224, 224])
Label Batch Dimensions: torch.Size([32])

6. 模型定义

###################################################
# MODEL
###################################################

class AlexNet(nn.Module):
    
    def __init__(self, num_classes=2):       # num_classes代表数据集的类别数
        
        super(AlexNet, self).__init__()
        
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=(3, 3), stride=2),

            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),

            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),

            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),

            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2)
        )
        
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
        
        self.classifers = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),

            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )
    
    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), 256*6*6)
        logits = self.classifers(x)
        probas = F.softmax(logits, dim=1)
        return logits, probas  
    
    # 记载模型
    def load(self, model_path):
        self.load_state_dict(torch.load(model_path))
    
    # 保存模型
    def save(self, model_name):
        # 状态字典的保存格式:文件名 + 日期时间 .pth
        prefix = 'checkpoints/' + model_name + '_'
        name = time.strftime(prefix + '%m%d_%H:%M:%S.pth')
        torch.save(self.state_dict, name)

model = AlexNet()
model = model.to(device)
Model

7. 定义优化器

##############################################
# Optimizer
##############################################

# optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay)

optimizer = torch.optim.SGD(model.parameters(), lr=opt.lr, momentum=0.8)
Optimizer

8. 计算准确率

# -------------------------------------------
# 计算准确率
# -------------------------------------------
def compute_acc(model, dataloader, device):
    
    correct_pred, num_examples = 0, 0            # correct_pred 统计正确预测的样本数,num_examples 统计样本总数
    for i, (features, targets) in enumerate(dataloader):
        
        features = features.to(device)
        targets = targets.to(device)
        
        logits, probas = model(features)
        _, predicted_labels = torch.max(probas, 1)
        
        num_examples += targets.size(0)
        assert predicted_labels.size() == targets.size()
        correct_pred += (predicted_labels == targets).sum()
    
    return correct_pred.float() / num_examples * 100     
compute_acc

9. 训练 and 验证

##############################################
# TRAINING and VALIDATION
##############################################

cost_list = []
train_acc_list, val_acc_list = [], []

start_time = time.time()

for epoch in range(opt.max_epoch):
    
    model.train()
    for batch_idx, (features, targets) in enumerate(train_dataloader):
        
        features = features.to(device)
        targets = targets.to(device)
        
        optimizer.zero_grad()
        
        logits, probas = model(features)
        # print(targets.size(), logits.size(), probas.size())
        cost = F.cross_entropy(logits, targets)
        # cost = torch.nn.CrossEntropyLoss(logits, targets)
        
        cost.backward()
        
        optimizer.step()
        
        cost_list.append(cost.item())
        
        if not batch_idx % 50:
            print('Epoch: %03d/%03d | Batch %03d/%03d | Cost: %.4f'
                 %(epoch+1, opt.max_epoch, batch_idx, len(train_dataloader), cost))
    
    model.eval()
    with torch.set_grad_enabled(False):     # save memory during inference
        
        train_acc = compute_acc(model, train_dataloader, device=device)
        val_acc = compute_acc(model, val_dataloader, device=device)
        
        print('Epoch: %03d/%03d | Training ACC: %.4f%% | Validation ACC: %.4f%%'
             %(epoch+1, opt.max_epoch, train_acc, val_acc))
        
        train_acc_list.append(train_acc)
        val_acc_list.append(val_acc)
    
    print('Time Elapsed: %.2f min' % ((time.time() - start_time)/60))

print('Total Time Elapsed: %.2f min' % ((time.time() - start_time)/60))
Training and Validation

eg:

Epoch: 001/030 | Batch 000/547 | Cost: 0.6945
Epoch: 001/030 | Batch 050/547 | Cost: 0.6920
Epoch: 001/030 | Batch 100/547 | Cost: 0.6942
Epoch: 001/030 | Batch 150/547 | Cost: 0.6926
Epoch: 001/030 | Batch 200/547 | Cost: 0.6926
Epoch: 001/030 | Batch 250/547 | Cost: 0.6946
Epoch: 001/030 | Batch 300/547 | Cost: 0.6920
Epoch: 001/030 | Batch 350/547 | Cost: 0.6951
Epoch: 001/030 | Batch 400/547 | Cost: 0.6943
Epoch: 001/030 | Batch 450/547 | Cost: 0.6946
Epoch: 001/030 | Batch 500/547 | Cost: 0.6932
Epoch: 001/030 | Training ACC: 51.7657% | Validation ACC: 50.8933%
Time Elapsed: 2.98 min
Epoch: 002/030 | Batch 000/547 | Cost: 0.6926
Epoch: 002/030 | Batch 050/547 | Cost: 0.6931
Epoch: 002/030 | Batch 100/547 | Cost: 0.6915
Epoch: 002/030 | Batch 150/547 | Cost: 0.6913
Epoch: 002/030 | Batch 200/547 | Cost: 0.6908
Epoch: 002/030 | Batch 250/547 | Cost: 0.6964
Epoch: 002/030 | Batch 300/547 | Cost: 0.6939
Epoch: 002/030 | Batch 350/547 | Cost: 0.6914
Epoch: 002/030 | Batch 400/547 | Cost: 0.6941
Epoch: 002/030 | Batch 450/547 | Cost: 0.6937
Epoch: 002/030 | Batch 500/547 | Cost: 0.6948
Epoch: 002/030 | Training ACC: 53.0400% | Validation ACC: 52.2933%
Time Elapsed: 6.00 min
...
Epoch: 030/030 | Batch 000/547 | Cost: 0.1297
Epoch: 030/030 | Batch 050/547 | Cost: 0.2972
Epoch: 030/030 | Batch 100/547 | Cost: 0.2468
Epoch: 030/030 | Batch 150/547 | Cost: 0.1685
Epoch: 030/030 | Batch 200/547 | Cost: 0.3452
Epoch: 030/030 | Batch 250/547 | Cost: 0.3029
Epoch: 030/030 | Batch 300/547 | Cost: 0.2975
Epoch: 030/030 | Batch 350/547 | Cost: 0.2125
Epoch: 030/030 | Batch 400/547 | Cost: 0.2317
Epoch: 030/030 | Batch 450/547 | Cost: 0.2464
Epoch: 030/030 | Batch 500/547 | Cost: 0.2487
Epoch: 030/030 | Training ACC: 89.5314% | Validation ACC: 88.6400%
Time Elapsed: 92.85 min
Total Time Elapsed: 92.85 min
View Code

10. 可视化 Loss

plt.plot(cost_list, label='Minibatch cost')
plt.plot(np.convolve(cost_list, 
                     np.ones(200,)/200, mode='valid'), 
         label='Running average')
plt.ylabel('Cross Entropy')
plt.xlabel('Iteration')
plt.legend()
plt.show()
visualize loss

eg:

11. 可视化 准确率

plt.plot(np.arange(1, opt.max_epoch+1), train_acc_list, label='Training')
plt.plot(np.arange(1, opt.max_epoch+1), val_acc_list, label='Validation')

plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
View Code

eg:

 
posted @ 2019-09-16 09:23  虔诚的树  阅读(2702)  评论(0编辑  收藏  举报