LaTex数学公式

排版方式:

行级元素(inline):使用$...$,表示公式的首尾
块级元素(displayed):使用$$...$$,默认居中显示


LaTex数学符号表

小写希腊字母

大写希腊字母

数学函数名

二元关系符

二元运算符

大尺寸运算符

箭头

定界符

大尺寸定界符

其它符号

AMS二元关系符

AMS二元否定关系符和箭头


举例:

$$ 
x_i^2 
$$

\[x_i^2 \]

$$ 
\log_2 x 
$$

\[\log_2 x \]

$$ 
10^{10} 
$$

\[10^{10} \]

$$
 \{1+2\} 
$$

\[ \{1+2\} \]

$$
\frac{1+1}{2}+1
$$

\[\frac{1+1}{2}+1 \]

$$
\sum_1^n
$$

\[\sum_1^n \]

$$
\int_1^n
$$

\[\int_1^n \]

$$
lim_{x\to\infty}
$$

\[lim_{x\to\infty} \]

$$
\begin{matrix}
        1 & x & x^2 \\
        1 & y & y^2 \\
        1 & z & z^2 \\
\end{matrix}
$$

\[\begin{matrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \\ \end{matrix} \]

$$
h(\theta) = \sum_{j=0}^n\theta_jx_j
$$

\[h(\theta) = \sum_{j=0}^n\theta_jx_j \]

$$
\frac{\partial J(\theta)}{\partial\theta_j} = -\frac{1}{m}\sum_{i=0}^m(y^i-h_\theta(x^i))x_j^i
$$

\[\frac{\partial J(\theta)}{\partial\theta_j} = -\frac{1}{m}\sum_{i=0}^m(y^i-h_\theta(x^i))x_j^i \]

$$
f(n) = 
	\begin{cases}
	n/2,  & \text{if $n$ is even} \\
	3n+1, & \text{if $n$ is odd} 
	\end{cases}
$$

\[f(n) = \begin{cases} n/2, & \text{if $n$ is even} \\ 3n+1, & \text{if $n$ is odd} \end{cases} \]

$$
\left\{
	\begin{array}{}
		a_1x+b_1y+c_1z = d_1\\
		a_2x+b_2y+c_2z = d_2\\
        	 a_3x+b_3y+c_3z = d_3
	\end{array}
\right.
$$

\[\left\{ \begin{array}{} a_1x+b_1y+c_1z = d_1\\ a_2x+b_2y+c_2z = d_2\\ a_3x+b_3y+c_3z = d_3 \end{array} \right. \]

$$
X = \left(
	\begin{matrix}
		x_{11} &x_{12}&\cdots&x_{1d}\\
		x_{21} &x_{22}&\cdots&x_{2d}\\
		\vdots&\vdots&\ddots&\vdots\\
		x_{m1}&x_{m2}&\cdots&x_{md}
	\end{matrix}
	\right)
  = \left(
 	\begin{matrix}
 		x_1^T\\
 		x_2^T\\
 		\vdots\\
 		x_m^T\\
 	\end{matrix}
      \right)
$$

\[X = \left( \begin{matrix} x_{11} &x_{12}&\cdots&x_{1d}\\ x_{21} &x_{22}&\cdots&x_{2d}\\ \vdots&\vdots&\ddots&\vdots\\ x_{m1}&x_{m2}&\cdots&x_{md} \end{matrix} \right) = \left( \begin{matrix} x_1^T\\ x_2^T\\ \vdots\\ x_m^T\\ \end{matrix} \right) \]

$$
\begin{align}
\frac{\partial J(\theta)}{\partial \theta_j}
	& = -\frac{1}{m}\sum_{i=0}^m(y^i-h_\theta(x^i))\frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))  \\
	& = -\frac{1}{m}\sum_{i=0}^m(y^i-h_\theta(x^i))\frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_jx_j^i-y^i)  \\
	& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x_i^j
 \end{align}
$$

\[\begin{align} \frac{\partial J(\theta)}{\partial \theta_j} & = -\frac{1}{m}\sum_{i=0}^m(y^i-h_\theta(x^i))\frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i)) \\ & = -\frac{1}{m}\sum_{i=0}^m(y^i-h_\theta(x^i))\frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_jx_j^i-y^i) \\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x_i^j \end{align} \]

$$
\sqrt{x^2+\sqrt{y}}  \\
\sqrt[3]{2} \\
$$

\[\sqrt{x^2+\sqrt{y}} \\ \sqrt[3]{2} \\ \]

$$
\overline{m+n}  \qquad 
\underline{m+n}
$$

\[\overline{m+n} \qquad \underline{m+n} \]

$$
\underbrace{a+b+\cdots+z}_{26}
$$

\[\underbrace{a+b+\cdots+z}_{26} \]

$$
\vec{a} \quad
\overrightarrow{AB}
$$

\[\vec{a} \quad \overrightarrow{AB} \]

$$
v = \sigma_1 \cdot \sigma_2 \tau_1 \cdot\tau_2
$$

\[v = \sigma_1 \cdot \sigma_2 \tau_1 \cdot\tau_2 \]

$$
\lim_{x \rightarrow 0} \frac{\sin x}{x}=1
$$

\[\lim_{x \rightarrow 0} \frac{\sin x}{x}=1 \]

$$
\mathop{\min_{G} \max_{D}}
$$

\[\mathop{\min_{G} \max_{D}} \]

设置大小括号

Reference:

一份不太简短的LaTex介绍

posted @ 2019-06-05 09:26  虔诚的树  阅读(740)  评论(0编辑  收藏  举报