面试题 04.08. 首个共同祖先
设计并实现一个算法,找出二叉树中某两个节点的第一个共同祖先。不得将其他的节点存储在另外的数据结构中。注意:这不一定是二叉搜索树。
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
3
/ \
5 1
/ \ / \
6 2 0 8
/ \
7 4
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉树中。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/first-common-ancestor-lcci
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if(root==null) return null; if(root==p || root==q) return root; TreeNode l = lowestCommonAncestor(root.left, p, q); TreeNode r = lowestCommonAncestor(root.right, p, q); if(l!=null&&r!=null){ return root; }else if(l==null&&r==null){ return null; }else{ return l==null?r:l; } } }
time complexity:
f(n)=2*f(n-1)=2*2*f(n-2)=2^(logn), so O(n).