叉积

二维叉积

View Code
1 struct point{
2     double x,y;
3 };
4 double xmult( point a,point b,point c ){
5     return ( b.x-a.x )*( c.y-a.y )-( b.y-a.y )*( c.x-a.x );
6 }

c

|

|

a-- -- -- -- --b

由b转向a!!

三维叉积

设A(x1,y1,zi)、B(x2,y2,z2)、C(x3,y3,z3)为不共线三点,
向量AB={x2-x1,y2-y1,z2-z1}
向量AC={x3-x1,y3-y1,z3-z1}
由A、B、C三点确定的平面的法向量就是向量AB与向量AC的叉积
三个分量分别是下面的三个二阶行列式
y2-y1 z2-z1 z2-z1 x2-x1 x2-x1 y2-y1
y3-y1 z3-z1 z3-z1 x3-x1 x3-x1 y3-y1
View Code
 1 struct point {
 2     double x,y,z;
 3 };
 4 point func( point a,point b,point c ){
 5     point one,two,ans;
 6     one.x=b.x-a.x,one.y=b.y-a.y,one.z=b.z-a.z;
 7     two.x=c.x-a.x,two.y=c.y-a.y,two.z=c.z-a.z;
 8     ans.x = one.y*two.z - one.z*two.y;
 9     ans.y = -one.x*two.z + one.z*two.x;
10     ans.z = one.x*two.y - one.y*two.x;
11     return ans;
12 }

 







posted @ 2013-03-19 21:49  xxx0624  阅读(414)  评论(0编辑  收藏  举报