GridSearchCV和RandomizedSearchCV调参
1 GridSearchCV实际上可以看做是for循环输入一组参数后再比较哪种情况下最优.
使用GirdSearchCV模板
# Use scikit-learn to grid search the batch size and epochs import numpy from sklearn.model_selection import GridSearchCV from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier import pandas as pd import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" # Function to create model, required for KerasClassifier def create_model(optimizer='adam'): # create model model = Sequential() model.add(Dense(12, input_dim=8, activation='relu')) model.add(Dense(1, activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model # fix random seed for reproducibility seed = 7 numpy.random.seed(seed) # load dataset dataset = pd.read_csv('diabetes.csv', ) # split into input (X) and output (Y) variables X = dataset[['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin','BMI', 'DiabetesPedigreeFunction', 'Age']] Y = dataset['Outcome'] # create model model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=10, verbose=0) # define the grid search parameters optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam'] param_grid = dict(optimizer=optimizer) grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1) grid_result = grid.fit(X, Y) # summarize results print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) print(grid_result) print('kkkk') print(grid_result.cv_results_) means = grid_result.cv_results_['mean_test_score'] stds = grid_result.cv_results_['std_test_score'] params = grid_result.cv_results_['params'] for mean, stdev, param in zip(means, stds, params): print("%f (%f) with: %r" % (mean, stdev, param))
参考:https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
https://blog.csdn.net/weixin_41988628/article/details/83098130
2
利用随机搜索实现鸢尾花调参,
from sklearn.datasets import load_iris # 自带的样本数据集 from sklearn.neighbors import KNeighborsClassifier # 要估计的是knn里面的参数,包括k的取值和样本权重分布方式 import matplotlib.pyplot as plt # 可视化绘图 from sklearn.model_selection import GridSearchCV,RandomizedSearchCV # 网格搜索和随机搜索 import pandas as pd iris = pd.read_csv('../data/iris.csv', ) print(iris.head()) print(iris.columns) X = iris[['Sepal.Length', 'Sepal.Width', 'Petal.Length','Petal.Width']] # 150个样本,4个属性 y = iris['Species'] # 150个类标号 k_range = range(1, 31) # 优化参数k的取值范围 weight_options = ['uniform', 'distance'] # 代估参数权重的取值范围。uniform为统一取权值,distance表示距离倒数取权值 # 下面是构建parameter grid,其结构是key为参数名称,value是待搜索的数值列表的一个字典结构 param_grid = {'n_neighbors':k_range,'weights':weight_options} # 定义优化参数字典,字典中的key值必须是分类算法的函数的参数名 print(param_grid) knn = KNeighborsClassifier(n_neighbors=5) # 定义分类算法。n_neighbors和weights的参数名称和param_grid字典中的key名对应 # ================================网格搜索======================================= # 这里GridSearchCV的参数形式和cross_val_score的形式差不多,其中param_grid是parameter grid所对应的参数 # GridSearchCV中的n_jobs设置为-1时,可以实现并行计算(如果你的电脑支持的情况下) grid = GridSearchCV(estimator = knn, param_grid = param_grid, cv=10, scoring='accuracy') #针对每个参数对进行了10次交叉验证。scoring='accuracy'使用准确率为结果的度量指标。可以添加多个度量指标 grid.fit(X, y) print('网格搜索-度量记录:',grid.cv_results_) # 包含每次训练的相关信息 print('网格搜索-最佳度量值:',grid.best_score_) # 获取最佳度量值 print('网格搜索-最佳参数:',grid.best_params_) # 获取最佳度量值时的代定参数的值。是一个字典 print('网格搜索-最佳模型:',grid.best_estimator_) # 获取最佳度量时的分类器模型 # 使用获取的最佳参数生成模型,预测数据 knn = KNeighborsClassifier(n_neighbors=grid.best_params_['n_neighbors'], weights=grid.best_params_['weights']) # 取出最佳参数进行建模 knn.fit(X, y) # 训练模型 print(knn.predict([[3, 5, 4, 2]])) # 预测新对象 # =====================================随机搜索=========================================== rand = RandomizedSearchCV(knn, param_grid, cv=10, scoring='accuracy', n_iter=10, random_state=5) # rand.fit(X, y) print('随机搜索-度量记录:',grid.cv_results_) # 包含每次训练的相关信息 print('随机搜索-最佳度量值:',grid.best_score_) # 获取最佳度量值 print('随机搜索-最佳参数:',grid.best_params_) # 获取最佳度量值时的代定参数的值。是一个字典 print('随机搜索-最佳模型:',grid.best_estimator_) # 获取最佳度量时的分类器模型 # 使用获取的最佳参数生成模型,预测数据 knn = KNeighborsClassifier(n_neighbors=grid.best_params_['n_neighbors'], weights=grid.best_params_['weights']) # 取出最佳参数进行建模 knn.fit(X, y) # 训练模型 print(knn.predict([[3, 5, 4, 2]])) # 预测新对象 # =====================================自定义度量=========================================== from sklearn import metrics # 自定义度量函数 def scorerfun(estimator, X, y): y_pred = estimator.predict(X) return metrics.accuracy_score(y, y_pred) rand = RandomizedSearchCV(knn, param_grid, cv=10, scoring='accuracy', n_iter=10, random_state=5) # rand.fit(X, y) print('随机搜索-最佳度量值:',grid.best_score_) # 获取最佳度量值
参考:https://blog.csdn.net/luanpeng825485697/article/details/79831703