fillna()函数
method: pad/ffill:用前一个非缺失值去填充该缺失值,用左边的非缺失值去填充该缺失值
backfill/bfill:用下一个非缺失值填充该缺失值,用右边的非缺失值去填充该缺失值
None:指定一个值去替换缺失值(默认这种方式)
limit参数:限制填充个数
axis参数:修改填充方向,默认为纵向填充,axis=1的时候,横向填充
import numpy as np
df = pd.DataFrame( [[np.nan,2,np.nan,np.nan],
[3,4,88,np.nan],
[np.nan,np.nan,np.nan,'k'],
[np.nan,3,np.nan,np.nan]],
columns=list('ABCD'))
print(df)
print(df.fillna(100)) # 用常数填充
print(df.fillna({'A':'这是第一列的填充值'}))# 字典填充
print(df.fillna(method='backfill')) # 同bfill
print(df.fillna(method='pad')) # 同ffill
print(df.fillna(method='pad', limit=1)) # limit限制了只填充一个
print(df.fillna(method='pad', axis=1)) # axis为1时,横向填充
# A B C D
# 0 NaN 2.0 NaN NaN
# 1 3.0 4.0 88.0 NaN
# 2 NaN NaN NaN k
# 3 NaN 3.0 NaN NaN
# A B C D
# 0 100.0 2.0 100.0 100
# 1 3.0 4.0 88.0 100
# 2 100.0 100.0 100.0 k
# 3 100.0 3.0 100.0 100
# A B C D
# 0 这是第一列的填充值 2.0 NaN NaN
# 1 3 4.0 88.0 NaN
# 2 这是第一列的填充值 NaN NaN k
# 3 这是第一列的填充值 3.0 NaN NaN
# A B C D
# 0 3.0 2.0 88.0 k
# 1 3.0 4.0 88.0 k
# 2 NaN 3.0 NaN k
# 3 NaN 3.0 NaN NaN
# A B C D
# 0 NaN 2.0 NaN NaN
# 1 3.0 4.0 88.0 NaN
# 2 3.0 4.0 88.0 k
# 3 3.0 3.0 88.0 k
# A B C D
# 0 NaN 2.0 NaN NaN
# 1 3.0 4.0 88.0 NaN
# 2 3.0 4.0 88.0 k
# 3 NaN 3.0 NaN k
# A B C D
# 0 NaN 2 2 2
# 1 3 4 88 88
# 2 NaN NaN NaN k
# 3 NaN 3 3 3
参考:https://blog.csdn.net/weixin_39549734/article/details/81221276
源码:
1 def fillna(self, value=None, method=None, axis=None, inplace=False,
2 limit=None, downcast=None, **kwargs):
3 return super(DataFrame,
4 self).fillna(value=value, method=method, axis=axis,
5 inplace=inplace, limit=limit,
6 downcast=downcast, **kwargs)
7
8 @Appender(_shared_docs['shift'] % _shared_doc_kwargs)