sql优化
总结到SQL优化中,就三点:
- 最大化利用索引;
- 尽可能避免全表扫描;
- 减少无效数据的查询;
理解SQL优化原理 ,首先要搞清楚SQL执行顺序:
SELECT语句 - 语法顺序:
1. SELECT
2. DISTINCT <select_list>
3. FROM <left_table>
4. <join_type> JOIN <right_table>
5. ON <join_condition>
6. WHERE <where_condition>
7. GROUP BY <group_by_list>
8. HAVING <having_condition>
9. ORDER BY <order_by_condition>
10.LIMIT <limit_number>
————————————————
SELECT语句 - 执行顺序:
FROM
<表名> # 选取表,将多个表数据通过笛卡尔积变成一个表。
ON
<筛选条件> # 对笛卡尔积的虚表进行筛选
JOIN <join, left join, right join...>
<join表> # 指定join,用于添加数据到on之后的虚表中,例如left join会将左表的剩余数据添加到虚表中
WHERE
<where条件> # 对上述虚表进行筛选
GROUP BY
<分组条件> # 分组
<SUM()等聚合函数> # 用于having子句进行判断,在书写上这类聚合函数是写在having判断里面的
HAVING
<分组筛选> # 对分组后的结果进行聚合筛选
SELECT
<返回数据列表> # 返回的单列必须在group by子句中,聚合函数除外
DISTINCT
# 数据除重
ORDER BY
<排序条件> # 排序
LIMIT
<行数限制>
————————————————
一、避免不走索引的场景
1. 尽量避免在字段开头模糊查询,会导致数据库引擎放弃索引进行全表扫描。如下:
SELECT * FROM t WHERE username LIKE '%陈%'
优化方式:尽量在字段后面使用模糊查询。如下:
SELECT * FROM t WHERE username LIKE '陈%'
2. 尽量避免使用in 和not in,会导致引擎走全表扫描。如下:
SELECT * FROM t WHERE id IN (2,3)
优化方式:如果是连续数值,可以用between代替。如下:
SELECT * FROM t WHERE id BETWEEN 2 AND 3
3. 尽量避免使用 or,会导致数据库引擎放弃索引进行全表扫描。如下:
SELECT * FROM t WHERE id = 1 OR id = 3
优化方式:可以用union代替or。如下:
SELECT * FROM t WHERE id = 1
UNION
SELECT * FROM t WHERE id = 3
4. 尽量避免进行null值的判断,会导致数据库引擎放弃索引进行全表扫描。如下:
SELECT * FROM t WHERE score IS NULL
优化方式:可以给字段添加默认值0,对0值进行判断。如下:
SELECT * FROM t WHERE score = 0
5.尽量避免在where条件中等号的左侧进行表达式、函数操作,会导致数据库引擎放弃索引进行全表扫描。
可以将表达式、函数操作移动到等号右侧。如下:
-- 全表扫描
SELECT * FROM T WHERE score/10 = 9
-- 走索引
SELECT * FROM T WHERE score = 10*9
6. 查询条件不能用 <> 或者 !=
使用索引列作为条件进行查询时,需要避免使用<>或者!=等判断条件。如确实业务需要,使用到不等于符号,需要在重新评估索引建立,避免在此字段上建立索引,改由查询条件中其他索引字段代替。
7. where条件仅包含复合索引非前置列
如下:复合(联合)索引包含key_part1,key_part2,key_part3三列,但SQL语句没有包含索引前置列"key_part1",按照MySQL联合索引的最左匹配原则,不会走联合索引。详情参考《联合索引的使用原理》。
select col1 from table where key_part2=1 and key_part3=2
8. 隐式类型转换造成不使用索引
如下SQL语句由于索引对列类型为varchar,但给定的值为数值,涉及隐式类型转换,造成不能正确走索引。
select col1 from table where col_varchar=123;
10. order by 条件要与where中条件一致,否则order by不会利用索引进行排序
-- 不走age索引
SELECT * FROM t order by age;
-- 走age索引
SELECT * FROM t where age > 0 order by age;
对于上面的语句,数据库的处理顺序是:
第一步:根据where条件和统计信息生成执行计划,得到数据。
第二步:将得到的数据排序。当执行处理数据(order by)时,数据库会先查看第一步的执行计划,看order by 的字段是否在执行计划中利用了索引。如果是,则可以利用索引顺序而直接取得已经排好序的数据。如果不是,则重新进行排序操作。
第三步:返回排序后的数据。
当order by 中的字段出现在where条件中时,才会利用索引而不再二次排序,更准确的说,order by 中的字段在执行计划中利用了索引时,不用排序操作。
这个结论不仅对order by有效,对其他需要排序的操作也有效。比如group by 、union 、distinct等。
二、SELECT语句其他优化
1. 避免出现select *
首先,select * 操作在任何类型数据库中都不是一个好的SQL编写习惯。
使用select * 取出全部列,会让优化器无法完成索引覆盖扫描这类优化,会影响优化器对执行计划的选择,也会增加网络带宽消耗,更会带来额外的I/O,内存和CPU消耗。
建议提出业务实际需要的列数,将指定列名以取代select *。具体详情见《为什么大家都说SELECT * 效率低》:
2. 避免出现不确定结果的函数
特定针对主从复制这类业务场景。由于原理上从库复制的是主库执行的语句,使用如now()、rand()、sysdate()、current_user()等不确定结果的函数很容易导致主库与从库相应的数据不一致。另外不确定值的函数,产生的SQL语句无法利用query cache。
3.多表关联查询时,小表在前,大表在后。
在MySQL中,执行 from 后的表关联查询是从左往右执行的(Oracle相反),第一张表会涉及到全表扫描,所以将小表放在前面,先扫小表,扫描快效率较高,在扫描后面的大表,或许只扫描大表的前100行就符合返回条件并return了。
例如:表1有50条数据,表2有30亿条数据;如果全表扫描表2,你品,那就先去吃个饭再说吧是吧。
4. 使用表的别名
当在SQL语句中连接多个表时,请使用表的别名并把别名前缀于每个列名上。这样就可以减少解析的时间并减少哪些友列名歧义引起的语法错误。
5. 用where字句替换HAVING字句
避免使用HAVING字句,因为HAVING只会在检索出所有记录之后才对结果集进行过滤,而where则是在聚合前刷选记录,如果能通过where字句限制记录的数目,那就能减少这方面的开销。HAVING中的条件一般用于聚合函数的过滤,除此之外,应该将条件写在where字句中。
where和having的区别:where后面不能使用组函数
6.调整Where字句中的连接顺序
MySQL采用从左往右,自上而下的顺序解析where子句。根据这个原理,应将过滤数据多的条件往前放,最快速度缩小结果集。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· 三行代码完成国际化适配,妙~啊~
· .NET Core 中如何实现缓存的预热?
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?