四川大学2010年数学分析考研试题

1.计算下列极限 (每小题7分,共28分) 

(1).$\displaystyle \lim\limits_{x\to 0 } \frac{\sqrt{\cos x}-\sqrt[3]{\cos x}}{\sin^{2}x}$.


(2)$\displaystyle \lim\limits_{n\to \infty} \left( \frac{1^{p}+2^{p}+\cdots +n^{p}}{n^{p}}-\frac{n}{p+1}\right)$,$(p\in N,p\ge 1)$.


(3)$\displaystyle \lim\limits_{x\to +\infty}\frac{\displaystyle x^{2\ln x}-x}{(\ln x)^{x}+x}$.


(4)$\displaystyle \lim\limits_{n \to \infty}\sqrt[n]{1+a^{n}+\sin^{2}n},a>0$.

 

2.计算积分(每小题8分,共40分)

 

(1).$\displaystyle \int\frac{\sin x \cos^{3}x}{1+\cos^{2}x}dx$;


(2).$\displaystyle \oint_{L}\frac{(x-y)dx+(x+4y)dy}{x^{2}+4y^{2}}$,其中$L$为单位圆$x^{2}+y^{2}=1$,取逆时针方向;

 

(3).$\displaystyle \iint_{\Sigma}(2x+z)dydz+zdxdy$,其中$\Sigma$是曲面$z=x^{2}+y^{2}(0\le z\le 1)$取上侧;



(4).$\displaystyle g(\alpha)=\int_{1}^{+\infty}\frac{\arctan \alpha x}{x^{2}\sqrt{x^{2}-1}}dx$;



(5).设$\displaystyle f(x)=\int_{1}^{x}\frac{\sin t}{t}dt$,求$\displaystyle \int_{0}^{1}xf(x)dx$.

 

3.(本题12分) $f(x)$在$[0,+\infty)$连续,且$\displaystyle  \lim\limits_{x\to +\infty}\left(f(x)+\sin x\right)=0$.证明:$f(x)$在$[0,+\infty)$上一致连续.

 

4.(本题10分) 令$u=f(z)$,其中$z=z(x,y)$是由方程$\displaystyle z=x+y\varphi(z)$确定的隐函数,且$f(z)$和$\varphi (z)$是任意阶可微函数.证明:

$$\frac{\partial ^{n}u}{\partial y^{n}}=\frac{\partial ^{n-1}}{\partial x^{n-1}}\left[ \left(\varphi(z)\right)^{n}\frac{\partial u}{\partial x} \right]$$

 

5.(本题15分) 证明:如果函数$f(x)$在$(0,+\infty)$内可微,且$\displaystyle \lim\limits_{x\to +\infty}f'(x)=0$.则$\displaystyle \lim\limits_{x\to +\infty}\frac{f(x)}{x}=0$.

 

6.(本题10分) 设$f(x)$在$[a,b]$内可导且$f(a)=0$.证明:$$M^{2}\le (b-a)\int_{a}^{b}\left[f'(x)\right]^{2}dx$$其中,$M=\sup\limits_{a\le x\le b}\left\{ \left|f(x)\right|\right\}$.

 

7.(本题20分) 

设$\displaystyle f_{n}(x)=n^{\alpha}xe^{-nx},n\in N$.当参数$\alpha $为何值时


(1).函数列$\displaystyle \{f_{n}(x)\}$在$[0,1]$上收敛;


(2).函数列$\displaystyle \{f_{n}(x)\}$在$[0,1]$上一致收敛;


(3).$\displaystyle \int_{0}^{1}\lim\limits_{n\to \infty}f_{n}(x)dx=\lim\limits_{n\to\infty}\int_{0}^{1}f_{n}(x)dx$.

 

8.(本题15分) 证明:$$\displaystyle \iiint\limits_{\Omega}\frac{dxdydz}{r}=\frac{1}{2}\iint\limits_{\partial \Omega}\cos \left( \overrightarrow{r}, \overrightarrow{n}\right)dS$$

其中$\Omega$为$R^{3}$中的单连通区域,$\partial \Omega$为其光滑边界曲面,$\overrightarrow{n}$为$\partial \Omega$在点$(x,y,z)$的单位外发矢量,$r=\sqrt{(\xi -x)^{2}+(\eta -y)^{2}+(\zeta -z)^{2}},\overrightarrow{r}=(x-\xi)\overrightarrow{i}+(y-\eta)\overrightarrow{j}+(z-\zeta)\overrightarrow{k}$为连接空间中点$(\xi,\eta,\zeta)$到$(x,y,z)$的矢量.

 

posted @ 2016-06-15 10:06  香柚子  阅读(393)  评论(0编辑  收藏  举报