李宏毅机器学习笔记04(Classification: Logistic Regression)

Logistic Regression逻辑回归

思路:

1、逻辑回归 vs 线性回归(Logistics Regression VS Linear Regression )

2、生成模型 vs 判别模型(Generative Model VS Discriminative Model)

3、逻辑回归 vs  深度学习(Logistics Regression VS Deep Learning)

 

1、逻辑回归 vs 线性回归(Logistics Regression VS Linear Regression )

  什么是逻辑回归:

  • 逻辑回归是解决分类问题的一种算法
  • 它与linear regression 形式上有点像(本质上是在线性模型外面“裹”一个sigmoid激活函数,来表示概率的函数)
  • 它是一种判别模型,与前面说的生成模型不同
  • 它是深度学习的基础

  1、model不同

                     

  

  与线性回归的model不同:

 

         

 

  2、Loss 函数不同

 

   回顾我们线性回归的Loss函数中是跟训练数据(x1,y^1)中的y^1的差值平方和,那么逻辑回归是否也要建立与y^的联系呢。下面就要开始拼凑了!

 

      

 

  对比:

  

  

   为什么不是用平方差呢?

               

 

  3、Step3是类似的

  先算左边(红色框)的偏导,再算右边红色框的偏导,再整理式子:

 

                           

 

 

    对比:

  

 

2、生成模型 vs 判别模型(Generative Model VS Discriminative Model)

  

 

    一般来说,判别模型表现得会比生成模型好,为什么?

  

              

 

    

     生成模型是基于假想的概率模型的,如果样本不平衡的话,计算出来的概率是会有误差的

    但是生成模型也有优点:

    1、样本量少的时候表现比判别模型好,因为它能自己脑补出一个假想模型

    2、噪声对它影响较小,因为它没有过分依赖数据,它是按照自己假想模型走的

    

 

3、逻辑回归 vs  深度学习(Logistics Regression VS Deep Learning)

  

  逻辑回归是解决分类问题的,实际中的问题大多是多分类的问题,多分类问题会用到softmax

 

                         

 

    

   逻辑回归是有它的局限性的,这时候就需要深度学习了!下面举个栗子:

  我们要用逻辑回归方法分类出下面的红点与蓝点,是需要用特征工程的方法的,而特征工程是需要我们人为地去建立一个特征函数去把这些点转化,实际上是比较难的,或者说比较费工夫的。

 

                 

 

    不想做特征工程,那深度学习就横空出世了!看下一节吧

    

 

posted @ 2019-08-05 10:21  zr-zhang2019  阅读(670)  评论(0编辑  收藏  举报