Neural Network模型复杂度之Dropout - Python实现

  • 背景介绍
    Neural Network之模型复杂度主要取决于优化参数个数与参数变化范围. 优化参数个数可手动调节, 参数变化范围可通过正则化技术加以限制. 本文从优化参数个数出发, 以dropout技术为例, 简要演示dropout参数丢弃比例对Neural Network模型复杂度的影响.

  • 算法特征
    ①. 训练阶段以概率丢弃数据点; ②. 测试阶段保留所有数据点

  • 算法推导
    以概率\(p\)对数据点\(x\)进行如下变换,

    \[\begin{equation*} x' = \left\{\begin{split} &0 &\quad\text{with probability $p$,} \\ &\frac{x}{1-p} &\quad\text{otherwise,} \end{split}\right. \end{equation*} \]

    即数据点\(x\)以概率\(p\)置零, 以概率\(1-p\)放大\(1/(1-p)\)倍. 此时有,

    \[\begin{equation*} \mathbf{E}[x'] = p\mathbf{E}[0] + (1-p)\mathbf{E}[\frac{x}{1-p}] = \mathbf{E}[x], \end{equation*} \]

    此变换不改变数据点均值, 为无偏变换.
    若数据点\(x\)作为某线性变换之输入, 将其置零, 则对此线性变换无贡献, 等效于无效化该数据点及相关权重参数, 减少了优化参数个数, 降低了模型复杂度.

  • 数据、模型与损失函数
    数据生成策略如下,

    \[\begin{equation*} \left\{\begin{aligned} x &= r + 2g + 3b \\ y &= r^2 + 2g^2 + 3b^2 \\ lv &= -3r - 4g - 5b \end{aligned}\right. \end{equation*} \]

    Neural Network网络模型如下,

    其中, 输入层为$(r, g, b)$, 隐藏层取激活函数$\tanh$, 输出层为$(x, y, lv)$且不取激活函数.
    损失函数如下, $$ \begin{equation*} L = \sum_i\frac{1}{2}(\bar{x}^{(i)}-x^{(i)})^2+\frac{1}{2}(\bar{y}^{(i)}-y^{(i)})^2+\frac{1}{2}(\bar{lv}^{(i)}-lv^{(i)})^2 \end{equation*} $$ 其中, $i$为data序号, $(\bar{x}, \bar{y}, \bar{lv})$为相应观测值.
  • 代码实现
    本文拟将中间隐藏层节点数设置为300, 使模型具备较高复杂度. 后逐步提升置零概率\(p\), 使模型复杂度降低, 以此观察泛化误差的变化. 具体实现如下,

    code
    import numpy
    import torch
    from torch import nn
    from torch import optim
    from torch.utils import data
    from matplotlib import pyplot as plt
    
    
    # 获取数据与封装数据
    def xFunc(r, g, b):
        x = r + 2 * g + 3 * b
        return x
    
    
    def yFunc(r, g, b):
        y = r ** 2 + 2 * g ** 2 + 3 * b ** 2
        return y
    
    
    def lvFunc(r, g, b):
        lv = -3 * r - 4 * g - 5 * b
        return lv
    
    
    class GeneDataset(data.Dataset):
        
        def __init__(self, rRange=[-1, 1], gRange=[-1, 1], bRange=[-1, 1], num=100, transform=None,\
                     target_transform=None):
            self.__rRange = rRange
            self.__gRange = gRange
            self.__bRange = bRange
            self.__num = num
            self.__transform = transform
            self.__target_transform = transform
            
            self.__X = self.__build_X()
            self.__Y_ = self.__build_Y_()
            
        
        def __build_X(self):
            rArr = numpy.random.uniform(*self.__rRange, (self.__num, 1))
            gArr = numpy.random.uniform(*self.__gRange, (self.__num, 1))
            bArr = numpy.random.uniform(*self.__bRange, (self.__num, 1))
            X = numpy.hstack((rArr, gArr, bArr))
            return X
        
        
        def __build_Y_(self):
            rArr = self.__X[:, 0:1]
            gArr = self.__X[:, 1:2]
            bArr = self.__X[:, 2:3]
            xArr = xFunc(rArr, gArr, bArr)
            yArr = yFunc(rArr, gArr, bArr)
            lvArr = lvFunc(rArr, gArr, bArr)
            Y_ = numpy.hstack((xArr, yArr, lvArr))
            return Y_
        
        
        def __len__(self):
            return self.__num
        
        
        def __getitem__(self, idx):
            x = self.__X[idx]
            y_ = self.__Y_[idx]
            if self.__transform:
                x = self.__transform(x)
            if self.__target_transform:
                y_ = self.__target_transform(y_)
            return x, y_
    
    
    # 构建模型
    class Linear(nn.Module):
        
        def __init__(self, dim_in, dim_out):
            super(Linear, self).__init__()
            
            self.__dim_in = dim_in
            self.__dim_out = dim_out
            self.weight = nn.Parameter(torch.randn((dim_in, dim_out)))
            self.bias = nn.Parameter(torch.randn((dim_out,)))
            
            
        def forward(self, X):
            X = torch.matmul(X, self.weight) + self.bias
            return X
        
        
    class Tanh(nn.Module):
        
        def __init__(self):
            super(Tanh, self).__init__()
            
            
        def forward(self, X):
            X = torch.tanh(X)
            return X
    
    
    class Dropout(nn.Module):
        
        def __init__(self, p):
            super(Dropout, self).__init__()
            
            assert 0 <= p <= 1
            self.__p = p     # 置零概率
            
            
        def forward(self, X):
            if self.__p == 0:
                return X
            if self.__p == 1:
                return torch.zeros_like(X)
            mark = (torch.rand(X.shape) > self.__p).type(torch.float)
            X = X * mark / (1 - self.__p)
            return X
        
    
    class MLP(nn.Module):
        
        def __init__(self, dim_hidden=50, p=0, is_training=True):
            super(MLP, self).__init__()
            
            self.__dim_hidden = dim_hidden
            self.__p = p
            self.training = True
            self.__dim_in = 3
            self.__dim_out = 3
            
            self.lin1 = Linear(self.__dim_in, self.__dim_hidden)
            self.tanh = Tanh()
            self.drop = Dropout(self.__p)
            self.lin2 = Linear(self.__dim_hidden, self.__dim_out)
    
            
        def forward(self, X):
            X = self.tanh(self.lin1(X))
            if self.training:
                X = self.drop(X)
            X = self.lin2(X)
            return X
    
    
    # 构建损失函数
    class MSE(nn.Module):
            
        def __init__(self):
            super(MSE, self).__init__()
            
            
        def forward(self, Y, Y_):
            loss = torch.sum((Y - Y_) ** 2) / 2
            return loss
    
    
    # 训练单元与测试单元
    def train_epoch(trainLoader, model, loss_fn, optimizer):
        model.train()
        loss = 0
        
        with torch.enable_grad():
            for X, Y_ in trainLoader:
                optimizer.zero_grad()
                Y = model(X)
                loss_tmp = loss_fn(Y, Y_)
                loss_tmp.backward()
                optimizer.step()
                
                loss += loss_tmp.item()
        return loss
                
            
    def test_epoch(testLoader, model, loss_fn):
        model.eval()
        loss = 0
        
        with torch.no_grad():
            for X, Y_ in testLoader:
                Y = model(X)
                loss_tmp = loss_fn(Y, Y_)
                loss += loss_tmp.item()
                
        return loss
    
    
    # 进行训练与测试
    def train(trainLoader, testLoader, model, loss_fn, optimizer, epochs):
        minLoss = numpy.inf
        for epoch in range(epochs):
            trainLoss = train_epoch(trainLoader, model, loss_fn, optimizer) / len(trainLoader.dataset)
            testLoss = test_epoch(testLoader, model, loss_fn) / len(testLoader.dataset)
            if testLoss < minLoss:
                minLoss = testLoss
                torch.save(model.state_dict(), "./mlp.params")
    #         if epoch % 100 == 0:
    #             print(f"epoch = {epoch:8}, trainLoss = {trainLoss:15.9f}, testLoss = {testLoss:15.9f}")
        return minLoss
    
    
    numpy.random.seed(0)
    torch.random.manual_seed(0)
    
    def search_dropout():
        trainData = GeneDataset(num=50, transform=torch.Tensor, target_transform=torch.Tensor)
        trainLoader = data.DataLoader(trainData, batch_size=50, shuffle=True)
        testData = GeneDataset(num=1000, transform=torch.Tensor, target_transform=torch.Tensor)
        testLoader = data.DataLoader(testData, batch_size=1000, shuffle=False)
    
        dim_hidden1 = 300
        p = 0.005
        model = MLP(dim_hidden1, p)
        loss_fn = MSE()
        optimizer = optim.Adam(model.parameters(), lr=0.003)
        train(trainLoader, testLoader, model, loss_fn, optimizer, 100000)
    
        pRange = numpy.linspace(0, 1, 101)
        lossList = list()
        for idx, p in enumerate(pRange):
            model = MLP(dim_hidden1, p)
            loss_fn = MSE()
            optimizer = optim.Adam(model.parameters(), lr=0.003)
            model.load_state_dict(torch.load("./mlp.params"))
            loss = train(trainLoader, testLoader, model, loss_fn, optimizer, 100000)
            lossList.append(loss)
            print(f"p = {p:10f}, loss = {loss:15.9f}")
    
        minIdx = numpy.argmin(lossList)
        pBest = pRange[minIdx]
        lossBest = lossList[minIdx]
    
        fig = plt.figure(figsize=(5, 4))
        ax1 = fig.add_subplot(1, 1, 1)
        ax1.plot(pRange, lossList, ".--", lw=1, markersize=5, label="testing error", zorder=1)
        ax1.scatter(pBest, lossBest, marker="*", s=30, c="red", label="optimal", zorder=2)
        ax1.set(xlabel="$p$", ylabel="error", title="optimal dropout probability = {:.5f}".format(pBest))
        ax1.legend()
        fig.tight_layout()
        fig.savefig("search_p.png", dpi=100)
        # plt.show()
    
    
    
    if __name__ == "__main__":
        search_dropout()
    
  • 结果展示

    可以看到, 泛化误差在提升置零概率后先下降后上升, 大致对应降低模型复杂度使模型表现从过拟合至欠拟合.
  • 使用建议
    ①. dropout为使整个节点失效, 通常作用在节点的最终输出上(即激活函数后);
    ②. dropout适用于神经网络全连接层.

  • 参考文档
    ①. 动手学深度学习 - 李牧

posted @ 2022-05-26 23:34  LOGAN_XIONG  阅读(192)  评论(0编辑  收藏  举报