Neural Network模型复杂度之Weight Decay - Python实现

  • 背景介绍
    Neural Network之模型复杂度主要取决于优化参数个数与参数变化范围. 优化参数个数可手动调节, 参数变化范围可通过正则化技术加以限制. 正则化技术之含义是: 引入额外的条件, 对function space进行适当的约束. 本文借助pytorch前向计算与反向传播特性, 以正则化技术之weight decay($l^2$范数)为例, 简要演示正则化对Neural Network模型复杂度的影响.
  • 操作流程
    ①. 获取数据; ②. 封装数据; ③. 构建模型; ④. 构建损失函数; ⑤. 构建优化器; ⑥. 训练单元; ⑦. 测试单元; ⑧. 启动训练测试; ⑨. 保存模型
  • 数据、模型与损失函数
    数据生成策略如下,
    \begin{equation*}
    \left\{
    \begin{aligned}
    x &= r + 2g + 3b \\
    y &= r^2 + 2g^2 + 3b^2 \\
    lv &= -3r-4g-5b
    \end{aligned}
    \right.
    \end{equation*}
    Neural Network网络模型如下,
    其中, 输入层为$(r,g,b)$, 隐藏层取激活函数为双曲正切函数$\tanh$, 输出层为$(x,y,lv)$且不取激活函数.
    损失函数如下,
    \begin{gather*}
    L = \sum_i\frac{1}{2}(\bar{x}^{(i)}-x^{(i)})^2+\frac{1}{2}(\bar{y}^{(i)}-y^{(i)})^2+\frac{1}{2}(\bar{lv}^{(i)}-lv^{(i)})^2 \\
    J = L + \frac{\lambda}{2}\|W\|_2^2
    \end{gather*}
    其中, $i$为data序号, $(\bar{x}, \bar{y}, \bar{lv})$为相应观测值, $W$为隐藏层weight, $L$为原始损失函数, $J$为添加$W$之$l^2$正则项后的损失函数, $\lambda$为可调超参数控制正则项在损失函数$J$中的权重.
  • 代码实现
    本文拟将中间隐藏层节点数设置为50, 使模型具备较高复杂度. 后逐渐提升权重参数$\lambda$, 使模型复杂度降低, 以此观察泛化误差的变化. 根据操作流程, 具体实现如下,
      1 # L2 normalization之实现:
      2 # 1. 获取数据
      3 # 2. 封装数据
      4 # 3. 构建模型
      5 # 4. 构建损失函数
      6 # 5. 构建优化器
      7 # 6. 训练单元
      8 # 7. 测试单元
      9 # 8. 启动训练与测试
     10 # 9. 保存模型
     11 
     12 import numpy
     13 import torch
     14 from torch import optim
     15 from matplotlib import pyplot as plt
     16 
     17 
     18 numpy.random.seed(0)
     19 torch.random.manual_seed(0)
     20 
     21 def xFunc(r, g, b):
     22     x = r + 2 * g + 3 * b
     23     return x
     24 
     25 def yFunc(r, g, b):
     26     y = r ** 2 + 2 * g ** 2 + 3 * b ** 2
     27     return y
     28 
     29 def lvFunc(r, g, b):
     30     lv = -3 * r - 4 * g - 5 * b
     31     return lv
     32 
     33 
     34 # 1. 获取数据
     35 class GeneData(object):
     36 
     37     def __init__(self, rRange=[-1, 1], gRange=[-1, 1], bRange=[-1, 1]):
     38         self.__rRange = rRange
     39         self.__gRange = gRange
     40         self.__bRange = bRange
     41 
     42     def getDataset(self, num):
     43         rArr, gArr, bArr = self.__generate_rgbArr(num)
     44         xArr, yArr, lvArr = self.__generate_xylvArr(rArr, gArr, bArr)
     45         rgb = numpy.hstack((rArr.reshape((-1, 1)), gArr.reshape((-1, 1)), bArr.reshape((-1, 1))))
     46         xylv = numpy.hstack((xArr.reshape((-1, 1)), yArr.reshape((-1, 1)), lvArr.reshape((-1, 1))))
     47         return torch.tensor(rgb, dtype=torch.float), torch.tensor(xylv, dtype=torch.float)
     48 
     49     def __generate_xylvArr(self, rArr, gArr, bArr):
     50         xArr = xFunc(rArr, gArr, bArr)
     51         yArr = yFunc(rArr, gArr, bArr)
     52         lvArr = lvFunc(rArr, gArr, bArr)
     53         return xArr, yArr, lvArr
     54 
     55     def __generate_rgbArr(self, num):
     56         rArr = numpy.random.uniform(*self.__rRange, num)
     57         gArr = numpy.random.uniform(*self.__gRange, num)
     58         bArr = numpy.random.uniform(*self.__bRange, num)
     59         return rArr, gArr, bArr
     60 
     61 
     62 # 2. 封装数据
     63 class PackData(object):
     64 
     65     def __init__(self, features, labels, batch_size=None, random_shuffle=True):
     66         self.__features = features
     67         self.__labels = labels
     68         self.__batch_size = batch_size
     69         self.__random_shuffle = random_shuffle
     70 
     71         self.num = self.__features.shape[0]
     72         if self.__batch_size is None:
     73             self.__batch_size = self.num
     74 
     75         self.__indices = list(range(self.num))
     76         if self.__random_shuffle:
     77             numpy.random.shuffle(self.__indices)
     78     
     79     def __call__(self):
     80         for i in range(0, self.num, self.__batch_size):
     81             batchIndices = self.__indices[i:min(i+self.__batch_size, self.num)]
     82             yield self.__features[batchIndices], self.__labels[batchIndices]
     83 
     84 
     85 # 3. 构建模型: multi-layer perceptron
     86 class MLP(object):
     87 
     88     def __init__(self, hidden_dim=100):
     89         self.__hidden_dim = hidden_dim
     90 
     91         self.l1_W = torch.normal(0, 0.01, (3, self.__hidden_dim), requires_grad=True)
     92         self.l1_b = torch.zeros((1, self.__hidden_dim), requires_grad=True)
     93         self.l1_f = torch.nn.Tanh()
     94 
     95         self.l2_W = torch.normal(0, 0.01, (self.__hidden_dim, 3), requires_grad=True)
     96         self.l2_b = torch.zeros((1, 3), requires_grad=True)
     97         
     98     def __call__(self, x):
     99         l1_1 = torch.matmul(x, self.l1_W) + self.l1_b
    100         l1_2 = self.l1_f(l1_1)
    101 
    102         l2_1 = torch.matmul(l1_2, self.l2_W) + self.l2_b
    103         return l2_1
    104 
    105 
    106 # 4. 构建损失函数
    107 class MSE(object):
    108 
    109     def __init__(self, lamda):
    110         self.__lamda = lamda
    111 
    112     def __call__(self, Y, Y_, mlpObj=None):
    113         L = torch.sum((Y - Y_) ** 2) / 2
    114         if mlpObj:
    115             term1 = torch.sum(mlpObj.l1_W ** 2)
    116             term2 = torch.sum(mlpObj.l2_W ** 2)
    117             term3 = (term1 + term2) * self.__lamda / 2
    118             L = L + term3
    119         return L
    120 
    121 
    122 # 6. 训练单元
    123 def training_epoch(packObj, mlpObj, mseObj, optObj):
    124     loss_total = 0
    125     with torch.enable_grad():
    126         for X, Y_ in packObj():
    127             optObj.zero_grad()
    128             Y = mlpObj(X)
    129             loss = mseObj(Y, Y_, mlpObj)
    130             loss.backward()
    131             optObj.step()
    132 
    133             loss_total += loss.item()
    134     return loss_total
    135 
    136 
    137 # 7. 测试单元
    138 def testing_epoch(packObj, mlpObj, mseObj):
    139     loss_total = 0
    140     with torch.no_grad():
    141         for X, Y_ in packObj():
    142             Y = mlpObj(X)
    143             loss = mseObj(Y, Y_)
    144             loss_total += loss.item()
    145     return loss_total
    146 
    147 
    148 # 8. 启动训练与测试
    149 def train(trainingData, testingData, model, loss, optimizer, maxEpoch=10000):
    150     testingLossList = list()
    151     for epoch in range(maxEpoch):
    152         training_epoch(trainingData, model, loss, optimizer)
    153         testingLoss = testing_epoch(testingData, model, loss) / testingData.num
    154         testingLossList.append(testingLoss)
    155         # if epoch % 100 == 0:
    156         #     print("epoch {}: testing error = {:.5f}".format(epoch,
    157         #         testingLoss))
    158 
    159     minIdx = numpy.argmin(testingLossList)
    160     testingLossBest = testingLossList[minIdx]
    161     return testingLossBest
    162 
    163 
    164 # 9. 模型保存
    165 def save(model, filename=None):
    166     l1_W = model.l1_W.detach().numpy()
    167     l1_b = model.l1_b.detach().numpy()
    168     l2_W = model.l2_W.detach().numpy()
    169     l2_b = model.l2_b.detach().numpy()
    170 
    171     if filename is None:
    172         filename = "./mlp.dat"
    173     with open(filename, "wt") as f:
    174         f.write("l1_W = \n")
    175         for row in l1_W:
    176             for ele in row:
    177                 f.write("{:.9f} ".format(ele))
    178             f.write("\n")
    179         f.write("\nl1_b = \n")
    180         for ele in l1_b[0]:
    181             f.write("{:.9f} ".format(ele))
    182         f.write("\n")
    183 
    184         f.write("\nl2_W = \n")
    185         for row in l2_W:
    186             for ele in row:
    187                 f.write("{:.9f} ".format(ele))
    188             f.write("\n")
    189         f.write("\nl2_b = \n")
    190         for ele in l2_b[0]:
    191             f.write("{:.9f} ".format(ele))
    192 
    193 
    194 # 搜索超参数lamda
    195 def search_lamda():
    196     rRange = [-10, 10]
    197     gRange = [-10, 10]
    198     bRange = [-10, 10]
    199     trainingNum = 500
    200     testingNum = 1000
    201     batch_size = 250
    202     hidden_dim = 50
    203 
    204     geneObj = GeneData(rRange, gRange, bRange)
    205     trainingData = geneObj.getDataset(trainingNum)
    206     testingData = geneObj.getDataset(testingNum)
    207     trainingPack = PackData(*trainingData, batch_size)
    208     testingPack = PackData(*testingData, batch_size)
    209 
    210     lamda = 0.001
    211     lr = 0.003
    212     mlpObj = MLP(hidden_dim)
    213     mseObj = MSE(lamda)
    214     params = [mlpObj.l1_W, mlpObj.l1_b, mlpObj.l2_W, mlpObj.l2_b]
    215     optObj = optim.Adam(params, lr)
    216     train(trainingPack, testingPack, mlpObj, mseObj, optObj, 100000)
    217     l1_W, l1_b, l2_W, l2_b = mlpObj.l1_W, mlpObj.l1_b, mlpObj.l2_W, mlpObj.l2_b
    218 
    219     lr = 0.003
    220     lamdaList = numpy.linspace(0, 0.01, 101)
    221     testList = list()
    222     for idx, lamda in enumerate(lamdaList):
    223         mlpObj = MLP(hidden_dim)
    224         mlpObj.l1_W.requires_grad = False
    225         mlpObj.l1_b.requires_grad = False
    226         mlpObj.l2_W.requires_grad = False
    227         mlpObj.l2_b.requires_grad = False
    228         l1_W.requires_grad = False
    229         l1_b.requires_grad = False
    230         l2_W.requires_grad = False
    231         l2_b.requires_grad = False
    232         mlpObj.l1_W[:], mlpObj.l1_b[:], mlpObj.l2_W[:], mlpObj.l2_b[:] = l1_W, l1_b, l2_W, l2_b
    233         mlpObj.l1_W.requires_grad = True
    234         mlpObj.l1_b.requires_grad = True
    235         mlpObj.l2_W.requires_grad = True
    236         mlpObj.l2_b.requires_grad = True
    237         mseObj = MSE(lamda)
    238         params = [mlpObj.l1_W, mlpObj.l1_b, mlpObj.l2_W, mlpObj.l2_b]
    239         optObj = optim.Adam(params, lr)
    240         testingLoss = train(trainingPack, testingPack, mlpObj, mseObj, optObj, 100000)
    241         print("lamda = {:5f}, testing error = {}".format(lamda, testingLoss))
    242         testList.append(testingLoss)
    243         l1_W, l1_b, l2_W, l2_b = mlpObj.l1_W, mlpObj.l1_b, mlpObj.l2_W, mlpObj.l2_b
    244 
    245     minIdx = numpy.argmin(testList)
    246     lamdaBest = lamdaList[minIdx]
    247     testBest = testList[minIdx]
    248 
    249     fig = plt.figure(figsize=(5, 4))
    250     ax1 = fig.add_subplot(1, 1, 1)
    251     ax1.plot(lamdaList, testList, ".--", lw=1, markersize=5, label="testing error", zorder=1)
    252     ax1.scatter(lamdaBest, testBest, marker="*", s=30, c="red", label="optimal", zorder=2)
    253     ax1.set(xlabel="$\\lambda$", ylabel="error", title="optimal $\\lambda$ = {:.5f}".format(lamdaBest))
    254     ax1.legend()
    255     fig.tight_layout()
    256     fig.savefig("search_lamda.png", dpi=100)
    257 
    258     ############
    259     maxEpoch = 100000
    260     mlpObj = MLP(hidden_dim)
    261     mseObj = MSE(lamdaBest)
    262     params = [mlpObj.l1_W, mlpObj.l1_b, mlpObj.l2_W, mlpObj.l2_b]
    263     optObj = optim.Adam(params, lr)
    264 
    265     testingLossBest = numpy.inf
    266     for epoch in range(maxEpoch):
    267         training_epoch(trainingPack, mlpObj, mseObj, optObj)
    268         testingLoss = testing_epoch(testingPack, mlpObj, mseObj) / testingPack.num
    269         print("epoch {}: testing error best = {}, testing error current = {}".format(epoch, testingLossBest, testingLoss))
    270         if testingLoss < testingLossBest:
    271             save(mlpObj)
    272             testingLossBest = testingLoss
    273 
    274 
    275 
    276 if __name__ == "__main__":
    277     search_lamda()
    View Code
  • 结果展示
    可以看到, 泛化误差在提升权重参数后先下降后上升, 大致对应降低模型复杂度使模型表现从过拟合至欠拟合.
  • 使用建议
    ①. bias代表函数偏置, 直观上对模型复杂度(函数平滑程度)影响微弱, 一般无需正则化;
    ②. 超参数连续调整时, 训练参数迭代初值可选用前一超参数下的收敛值;
    ③. weight decay适用于神经网络所有层.
  • 参考文档
    ①. 动手学深度学习 - 李牧
posted @ 2022-04-29 00:03  LOGAN_XIONG  阅读(173)  评论(0编辑  收藏  举报