百度百科:

  数据融合技术是指利用计算机对按时序获得的若干观测信息,在一定准则下加以自动分析、综合,以完成所需的决策和评估。包括对各种信息源给出的有用信息的采集、传输、综合、过滤、相关及合成,以便辅助人们进行态势/环境判定、规划、探测、验证、诊断。

  信息融合的基本原理是:充分利用传感器资源.通过对各种传感器及人工观测信息的合理支配与使用.将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则或算法组合来,产生对观测对象的一致性解释和描述。其目标是基于各传感器检测信息分解人工观测信息.通过对信息的优化组合来导出更多的有效信息。

  数据融合中心对来自多个传感器的信息进行融合,也可以将来自多个传感器的信息和人机界面的观测事实进行信息融合(这种融合通常是决策级融合).提取征兆信息,在推理机作用下.将征兆与知识库中的知识匹配,做出故障诊断决策,提供给用户。在基于信息融合的故障诊断系统中可以加入自学习模块。故障决策经自学习模块反馈给知识库.并对相应的置信度因子进行修改,更新知识库.同时.自学习模块能根据知识库中的知识和用户对系统提问的动态应答进行推理。以获得新知识.总结新经验,不断扩充知识库,实现专家系统的自学习功能。

  数据层融合:直接在采集到的原始数据层上进行的融合,在各种传感器的原始数据未经预处理之前就进行数据的综合与分析。数据层融合一般采用集中式融合体系进行融合处理过程。

  特征层融合:特征层融合属于中间层次的融合,它先对来自传感器的原始信息进行特征提取(特征可以是目标的边缘、方向、速度等),然后对特征信息进行综合分析和处理。特征层融合的优点在于实现了可观的信息压缩,有利于实时处理,并且由于所提取的特征直接与决策分析有关,因而融合结果能最大限度的给出决策分析所需要的特征信息。特征层融合一般采用分布式或集中式的融合体系。特征层融合可分为两大类:一类是目标状态融合;另一类是目标特性融合。

  决策层融合:决策层融合通过不同类型的传感器观测同一个目标,每个传感器在本地完成基本的处理,其中包括预处理、特征抽取、识别或判决,以建立对所观察目标的初步结论。然后通过关联处理进行决策层融合判决,最终获得联合推断结果。

参考文献:

posted on 2019-12-20 09:30  筱筱蛋坑  阅读(4233)  评论(0编辑  收藏  举报