C++隐式类型转换
转载自https://www.cnblogs.com/solidblog/p/3381628.html
什么是隐式转换?
众所周知,C++的基本类型中并非完全的对立,部分数据类型之间是可以进行隐式转换的。
所谓隐式转换,是指不需要用户干预,编译器私下进行的类型转换行为。很多时候用户可能都不知道进行了哪些转换。
为什么要进行隐式转换?
C++面向对象的多态特性,就是通过父类的类型实现对子类的封装。
通过隐式转换,你可以直接将一个子类的对象使用父类的类型进行返回。
在比如,数值和布尔类型的转换,整数和浮点数的转换等。
某些方面来说,隐式转换给C++程序开发者带来了不小的便捷。
C++是一门强类型语言,类型的检查是非常严格的。
如果没有类型的隐式转换,这将给程序开发者带来很多的不便。
当然,凡事都有两面性,在你享受方便快捷的一面时,你不得不面对太过智能以至完全超出了你的控制。
风险就在不知不觉间出现。
C++隐式转换的原则
- 基本数据类型 基本数据类型的转换以取值范围的作为转换基础(保证精度不丢失)。
隐式转换发生在从小->大的转换中。比如从char转换为int。
从int-》long。 - 自定义对象 子类对象可以隐式的转换为父类对象。
C++隐式转换发生条件
- 混合类型的算术运算表达式中。例如:
123int
a = 3;
double
b = 4.5;
a + b;
// a将会被自动转换为double类型,转换的结果和b进行加法操作
- 不同类型的赋值操作。例如:
12int
a =
true
; (
bool
类型被转换为
int
类型)
int
* ptr = null;(null被转换为
int
*类型)
- 函数参数传值。例如:
12void
func(
double
a);
func(1);
// 1被隐式的转换为double类型1.0
- 函数返回值。例如:
1234double
add(
int
a,
int
b)
{
return
a + b;
}
//运算的结果会被隐式的转换为double类型返回
#参考:http://developer.51cto.com/art/201002/183139.htm
#以上四种情况下的隐式转换,都满足了一个基本原则:低精度 –》 高精度转换。
不满足该原则,隐式转换是不能发生的。
当然这个时候就可以使用与之相对于的显式类型转换(又称强制类型转换),使用方法如下:
double a = 2.0;
int b = (int)a;
使用强制类型转换会导致精度的损失,因此使用时务必确保你已经拥有足够的把握。
隐式转换的风险
隐式转换的风险一般存在于自定义的类构造函数中。
按照默认规定,只有一个参数的构造函数也定义了一个隐式转换,将该构造函数对应数据类型的数据转换为该类对象。
- 例一
如下面所示:
12345678class
String
{
public
:
String (
const
char
* p );
// 用C风格的字符串p作为初始化值
//…
}
String s1 = “hello”;
//OK 隐式转换,等价于String s1 = String(”hello”)
12345678class
String
{
public
:
String (
int
n );
//本意是预先分配n个字节给字符串
String (
const
char
* p );
// 用C风格的字符串p作为初始化值
//…
}
String s2 ( 10 ); //OK 分配10个字节的空字符串
String s3 = String ( 10 ); //OK 分配10个字节的空字符串
下面两种写法就比较疑惑了:
String s4 = 10; //编译通过,也是分配10个字节的空字符串
String s5 = ‘a’; //编译通过,分配int(‘a’)个字节的空字符串
s4 和s5 分别把一个int型和char型,隐式转换成了分配若干字节的空字符串,容易令人误解。
#参考:http://blog.csdn.net/smilelance/article/details/1528737 - 例二
如下例:
123456789101112class
Test
{
public
:
Test(
int
a);
bool
isSame(Test other)
{
return
m_val == other.m_val;
}
private
:
int
m_val;
}
Test a(10);
If(a.isSame(10)) //该语句将返回true
本来用于两个Test对象的比较,竟然和int类型相等了。
这里就是由于发生了隐式转换,实际比较的是一个临时的Test对象。
这个在程序中是绝对不能允许的。
禁止隐式转换
既然隐式转换存在这么多的风险,那如何能够禁止隐式转换的发生呢。
C++中提供了explicit关键字,在构造函数声明的时候加上explicit关键字,能够禁止隐式转换。使用方法如下:
1
2
3
4
5
6
|
class Test { explicit Test( int a); …… } |
加上该关键字以后,如下的操作是合法的:
1
|
Test(10); |
如下的操作就变成非法的了:
1
|
Test aa = 10; |
这样就可以有效的防止隐式转换的发生,从而能够对程序进行精确控制,达到提高品质的目的。
隐式类类型转换
《C++ Primer》中提到:
“可以用 单个形参来调用 的构造函数定义了从 形参类型 到 该类类型 的一个隐式转换。”
这里应该注意的是, “可以用单个形参进行调用” 并不是指构造函数只能有一个形参,而是它可以有多个形参,但那些形参都是有默认实参的。
那么,什么是“隐式转换”呢? 上面这句话也说了,是从 构造函数形参类型 到 该类类型 的一个编译器的自动转换。
下面通过代码来看一看:
#include "stdafx.h" #include <string> #include <iostream> using namespace std ; class BOOK //定义了一个书类 { private: string _bookISBN ; //书的ISBN号 float _price ; //书的价格 public: //定义了一个成员函数,这个函数即是那个“期待一个实参为类类型的函数” //这个函数用于比较两本书的ISBN号是否相同 bool isSameISBN(const BOOK & other ){ return other._bookISBN==_bookISBN; } //类的构造函数,即那个“能够用一个参数进行调用的构造函数”(虽然它有两个形参,但其中一个有默认实参,只用一个参数也能进行调用) BOOK(string ISBN,float price=0.0f):_bookISBN(ISBN),_price(price){} }; int main() { BOOK A("A-A-A"); BOOK B("B-B-B"); cout<<A.isSameISBN(B)<<endl; //正经地进行比较,无需发生转换 cout<<A.isSameISBN(string("A-A-A"))<<endl; //此处即发生一个隐式转换:string类型-->BOOK类型,借助BOOK的构造函数进行转换,以满足isSameISBN函数的参数期待。 cout<<A.isSameISBN(BOOK("A-A-A"))<<endl; //显式创建临时对象,也即是编译器干的事情。 system("pause"); }
代码中可以看到,isSameISBN函数是期待一个BOOK类类型形参的,但我们却传递了一个string类型的给它,这不是它想要的啊!还好,BOOK类中有个构造函数,它使用一个string类型实参进行调用,编译器调用了这个构造函数,隐式地将stirng类型转换为BOOK类型(构造了一个BOOK临时对象),再传递给isSameISBN函数。
隐式类类型转换还是会带来风险的,正如上面标记,隐式转换得到类的临时变量,完成操作后就消失了,我们构造了一个完成测试后被丢弃的对象。
我们可以通过explicit声明来抑制这种转换:
explicit BOOK(string ISBN,float price=0.0f):_bookISBN(ISBN),_price(price){}
explicit关键字只能用于类内部的构造函数声明上.这样一来,BOOK类构造函数就不能用于隐式地创造对象了,编译上面的代码会出现这样的提示:
现在用户只能进行显示类型转换,显式地创建临时对象。
总结一下:
- 可以使用一个实参进行调用,不是指构造函数只能有一个形参。
- 隐式类类型转换容易引起错误,除非你有明确理由使用隐式类类型转换,否则,将可以用一个实参进行调用的构造函数都声明为explicit。
- explicit只能用于类内部构造函数的声明。它虽然能避免隐式类型转换带来的问题,但需要用户能够显式创建临时对象(对用户提出了要求)。