POJ 3268 (dijkstra算法)
Description
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
Output
Sample Input
4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3
Sample Output
10
Hint
1 #include<iostream>
2 #include<cstring>
3 #include<cmath>
4 #include<cstdio>
5 #include<algorithm>
6 #include<map>
7 #include<set>
8 #include<vector>
9 #include<queue>
10 using namespace std;
11 #define ll long long
12 const int mod=1e9+7;
13 const int inf=1e9+7;
14 const int maxn=1e3+10;
15 const int maxm=1e5+10;
16 int u[maxm];//计算正反两次迪杰斯特拉
17 int v[maxm];//需要把边存起来
18 int w[maxm];
19 int n,m;
20 int endd;
21 int dis[maxn];
22 int ans[maxn];
23 int e[maxn][maxn];
24 int book[maxn];
25 void init()
26 {
27 for(int i=1;i<=n;i++)
28 for(int j=1;j<=n;j++)
29 i==j?e[i][j]=0:e[i][j]=inf;
30 }
31 void dijkstra()
32 {
33 for(int i=1;i<=n;i++)
34 dis[i]=e[endd][i];
35 memset(book,0,sizeof(book));
36 book[endd]=1;
37 for(int k=1;k<=n-1;k++)
38 {
39 int minn=inf,temp;
40 for(int i=1;i<=n;i++)
41 {
42 if(book[i]==0&&dis[i]<minn)
43 minn=dis[temp=i];
44 }
45 book[temp]=1;
46 for(int j=1;j<=n;j++)
47 {
48 if(book[j]==0&&e[temp][j]<inf)
49 {
50 if(dis[j]>dis[temp]+e[temp][j])
51 dis[j]=dis[temp]+e[temp][j];
52 }
53 }
54 }
55 }
56 int main()
57 {
58 ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
59 cin>>n>>m>>endd;
60 init();
61 for(int i=1;i<=m;i++)
62 {
63 cin>>u[i]>>v[i]>>w[i];
64 e[u[i]][v[i]]=w[i];//正向边
65 }
66 dijkstra();
67 for(int i=1;i<=n;i++)
68 ans[i]=dis[i];//保存前一次的结果
69 init();
70 for(int i=1;i<=m;i++)
71 e[v[i]][u[i]]=w[i];//反向建边,所有奶牛往终点走反向之后等价于终点的单源最短路
72 dijkstra();
73 int maxx=-1;
74 for(int i=1;i<=n;i++)
75 {
76 if(ans[i]+dis[i]>maxx)
77 maxx=ans[i]+dis[i];//找最大值
78 }
79 cout<<maxx<<endl;
80 return 0;
81 }