Spark之Stream高级知识分享二(MapWithState +foreachRDD+Window+transform)

1.MapWithState 小案列

Spark Stream:以批处理为主,用微批处理来处理流数据

Flink:真正的流式处理,以流处理为主,用流处理来处理批数据

但是Spark的Strurctured Stream 确实是真正的流式处理来处理批数据

但是Spark的structured Stream确实是真正的流式处理,也是未来的Spark流式处理的未来方向,新的Stream特性也是加载那里了。

1)MapWithState可以实现和UpdateStateByKey一样对不同批次的数据的分析,但是他是实验性方法,慎用,可能下一版本就没了

2)MapWithState,只有当前批次出现了该key才会显示该key的所有的批次分析数据

3)最好的方式还是写DB

 

MapWithStateTest {
  def main(args: Array[String]) {

    //第一个参数是key,第二参数是当前value,第三个参数之前的value
     val mappingFunction = (key: String, value: Option[Int], state: State[Int])=> {
       val sum = value.getOrElse(0)+state.getOption().getOrElse(0)
       state.update(sum)
       (key,sum)
     }

    val sparkConf = new SparkConf()
      .setAppName("StatefulNetworkWordCount")
      .setMaster("local[3]")
    // Create the context with a 5 second batch size
    val ssc = new StreamingContext(sparkConf, Seconds(5))
    ssc.checkpoint(".")

    // Initial RDD input to updateStateByKey
    val initialRDD = ssc.sparkContext.parallelize(List(("hello", 1), ("world", 1)))
    // Create a ReceiverInputDStream on target ip:port and count the
    // words in input stream of \n delimited test (eg. generated by 'nc')
    val lines = ssc.socketTextStream("192.168.76.120", 1314)
    val words = lines.flatMap(_.split(" ")).map(x => (x, 1)).reduceByKey(_+_)
    val stateDstream = words.mapWithState(StateSpec.function(mappingFunction))

    stateDstream.print()


    ssc.start()
    ssc.awaitTermination()

  

2.(重要)foreachRDD小案列

1)foreachRDD是生产中用到最多的output(egger)函数,通过它可将DStream转换为RDD以及DF\DS,然后进行操作

2)forearchRDD的方法是在driver中进行的,故写DB时它的获取链接代码必须写在第二层循环的foreachPatition中,不然会爆序列化错误。

3)踩坑,在foreachPatition中数据的获取使用的是迭代器,不管是java还是scala,迭代器只能使用一次,第二次就为空了

4)踩坑,操作DB时要使用连接池

 

import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}

object ForeachRDDApp {
  def main(args: Array[String]): Unit = {{
    val sc = new SparkConf()
      .setAppName("word count")
      .setMaster("local[3]")

    val ssc = new StreamingContext(sc, Seconds(5))

    val lines = ssc.socketTextStream("192.168.76.120", 1314)
    //当数据多次被使用,数据持久化
//    lines.persist(StorageLevel.MEMORY_ONLY)
    val wordsDStrem = lines.flatMap(_.split(" "))
    wordsDStrem.foreachRDD(rdd =>{
      val spark =  SparkSession
        .builder
        .config(rdd.sparkContext.getConf)
        .getOrCreate()
      import spark.implicits._
      val wordDF = rdd.toDF("word")
      wordDF.createOrReplaceGlobalTempView("words")
      val countDF = spark.sql("select word, count(*) as total from words group by word")
      countDF.show()
    })
    
    ssc.start()
    ssc.awaitTermination()
  }

  }

}

  

3.Window小案列

1)窗口的长度以及滑动时间必须是批出来间隔的整数倍关系

2)窗口的功能完全可通过每次存储DB,然后查询多批次来实现

 

import javax.sql.ConnectionPoolDataSource
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
object WindowTFTest {
  def main(args: Array[String]): Unit = {
    val sc = new SparkConf()
      .setAppName("word count")
      .setMaster("local[3]")

    val ssc = new StreamingContext(sc, Seconds(5))

    val lines = ssc.socketTextStream("192.168.76.120", 1314)
    val wordContDS = lines.flatMap(_.split(" "))
      .map((_, 1))
      .reduceByKey(_ + _)
//        wordContDS.print()
    //window
    val windowDS = wordContDS.window(Seconds(20), Seconds(10))
    windowDS.print()

    //save
//    wordContDS.saveAsTextFiles("C:\\Users\\admin\\Desktop\\spark学习\\outPutData\\")

    ssc.start()
    ssc.awaitTermination()
  }

}

  

4. transform 白名单小案例

1)transform是Transformatition(lazy)类型操作,用它可以将Dstream转换成RDD,这样我们可以通过RDD的编程去实现业务逻辑,如白名单过滤等

 

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}

object TransformApp {

 def main(args: Array[String]): Unit = {
   val conf = new SparkConf()
     .setMaster("local[2]")
     .setAppName("Transform App")

   //每隔一秒的数据为一个batch
   val ssc = new StreamingContext(conf, Seconds(5))


   val whiteRDD = ssc.sparkContext.parallelize(List("17")).map((_, true))
   //读取的机器以及端口,读取的数据的格式是:老二,3,1 (姓名,年龄,性别)
   val lines = ssc.socketTextStream("192.168.43.125", 1314)

   val result = lines.map(x => (x.split(",")(0), x))
     .transform(rdd => {
       //(老二,((老二,3,1),Option[]))
       rdd.leftOuterJoin(whiteRDD)
         .filter(_._2._2.getOrElse(false) != true)
         .map(_._2._1)
     })
   result.print()
   
   ssc.start() // Start the computation
   ssc.awaitTermination() // Wait for the computation to terminate
 }
}

  

 

转载于:https://blog.csdn.net/qq_32641659/article/details/90748175

 

posted @ 2019-07-29 14:56  任重而道远的小蜗牛  阅读(818)  评论(0编辑  收藏  举报