hadoop配置支持LZO压缩格式并支持分片
【简介】
1@LZO本身是不支持分片的,但是我们给LZO压缩的文件加上索引,就支持分片了
2@Linux本身是不支持LZO压缩的,所以我们需要下载安装软件包,其中包括三个:lzo,lzop,hdoop-gpl-packaging.
3@hdoop-gpl-packaging的主要作用就是给压缩的LZO文件创建索引,否则LZO是不支持分片的,无论文件有多大,都只能有一个map
【说明】因为我的数据没有在压缩后还超过128M的,所以为了演示,在lzo压缩的文件即使超过一个块的大小依旧只用一个map进行,我把块的大小改为10M
[hadoop@hadoop001 hadoop]$ vi hdfs-site.xml
<property>
<name>dfs.blocksize</name>
<value>10485760</value>
</property>
【安装相关依赖】
安装以前先执行以下命令
[hadoop@hadoop001 ~]$ which lzop
/usr/bin/lzop
【注意】这代表你已经有lzop,如果找不到,就执行以下命令
#若没有执行如下安装命令【这些命令一定要在root用户下安装,否则没有权限】
[root@hadoop001 ~]# yum install -y svn ncurses-devel
[root@hadoop001 ~]# yum install -y gcc gcc-c++ make cmake
[root@hadoop001 ~]# yum install -y openssl openssl-devel svn ncurses-devel zlib-devel libtool
[root@hadoop001 ~]# yum install -y lzo lzo-devel lzop autoconf automake cmake
[root@hadoop001 ~]# yum -y install lzo-devel zlib-devel gcc autoconf automake libtool
【用lzop工具压缩测试数据文件】
lzo压缩:lzop -v filename
lzo解压:lzop -dv filename
[hadoop@hadoop001 data]$ ll
-rw-r--r-- 1 hadoop hadoop 68051224 Apr 17 17:37 part-r-00000
[hadoop@hadoop001 data]$ lzop -v part-r-00000
compressing part-r-00000 into part-r-00000.lzo
[hadoop@hadoop001 data]$ ll
-rw-r--r-- 1 hadoop hadoop 68051224 Apr 17 17:37 part-r-00000
-rw-r--r-- 1 hadoop hadoop 29975501 Apr 17 17:37 part-r-00000.lzo ##压缩好的测试数据
[hadoop@hadoop001 data]$ pwd
/home/hadoop/data
[hadoop@hadoop001 data]$ du -sh /home/hadoop/data/*
65M /home/hadoop/data/part-r-00000
29M /home/hadoop/data/part-r-00000.lzo
【安装hadoop-lzo】
[hadoop@hadoop001 app]$ wget https://github.com/twitter/hadoop-lzo/archive/master.zip
--2019-04-18 14:02:32-- https://github.com/twitter/hadoop-lzo/archive/master.zip
Resolving github.com... 13.250.177.223, 52.74.223.119, 13.229.188.59
Connecting to github.com|13.250.177.223|:443... connected.
HTTP request sent, awaiting response... 302 Found
Location: https://codeload.github.com/twitter/hadoop-lzo/zip/master [following]
--2019-04-18 14:02:33-- https://codeload.github.com/twitter/hadoop-lzo/zip/master
Resolving codeload.github.com... 13.229.189.0, 13.250.162.133, 54.251.140.56
Connecting to codeload.github.com|13.229.189.0|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [application/zip]
Saving to: “master.zip”
[ <=> ] 1,040,269 86.7K/s in 11s
2019-04-18 14:02:44 (95.4 KB/s) - “master.zip” saved [1040269]
[hadoop@hadoop001 app]$ll
-rw-rw-r-- 1 hadoop hadoop 1040269 Apr 18 14:02 master.zip
[hadoop@hadoop001 app]$ unzip master.zip
-rw-rw-r-- 1 hadoop hadoop 1040269 Apr 18 14:02 master.zip
drwxrwxr-x 5 hadoop hadoop 4096 Apr 17 13:42 hadoop-lzo-master #解压以后的东东 不要问我为什么名字变了
[hadoop@hadoop001 hadoop-lzo-master]$ pwd
/home/hadoop/app/hadoop-lzo-master
[hadoop@hadoop001 hadoop-lzo-master]$ vi pom.xml
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<hadoop.current.version>2.6.0</hadoop.current.version>
<hadoop.old.version>1.0.4</hadoop.old.version>
</properties>
【###这里的这四个步骤目前没弄懂是什么意思,回头有进展会进行说明,但是我参考另外一篇博客上,并没有这四部,所以应该并不影响
[hadoop@hadoop001 hadoop-lzo-master]$ export CFLAGS=-m64
[hadoop@hadoop001 hadoop-lzo-master]$ export CXXFLAGS=-m64
[hadoop@hadoop001 hadoop-lzo-master]$ export C_INCLUDE_PATH=/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/lzo/include
[hadoop@hadoop001 hadoop-lzo-master]$ export LIBRARY_PATH=/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/lzo/lib
###】
【mvn编译】
[hadoop@hadoop001 hadoop-lzo-master]$ mvn clean package -Dmaven.test.skip=true
#mvn编译,等待出现BUILD SUCCESS则表示编译成功,几分钟左右
【坑】我在第一次执行的时候一上来就报错
Could not create local repository at /root/maven_repo/repo -> [Help 1]
看到这个错误就感觉是用户不同步的问题,因为我当时编译hadoop的时候,怕出现权限问题,就用root用户编译的,所以库也健在root用户下,并没有考虑到这里还会用到这个库,所以报错的时候感觉很绝望。
解决方法:
尝试一:我把maven_repo这个文件夹及以下的文件夹的权限放到最大 失败
尝试二:我把maven_repo的用户和用户组改为hadoop 失败
尝试三:这个方法一开始就想到了,但是怕有问题,所以不敢用,最后没办法了,抱着试试的心态进行
把maven_repo这个文件夹移动到hadoop用下的app文件夹下
然后去maven安装目录修改setting文件的本地库的目录,让maven_repo所在目录跟setting配置一致
[hadoop@hadoop001 repo]$ pwd
/home/hadoop/app/maven_repo/repo
再次运行以上命令
[hadoop@hadoop001 hadoop-lzo-master]$ mvn clean package -Dmaven.test.skip=true
BUILD SUCCESS
成功啦!!!!欢呼!!!!!!!!!!!!!
【查看编译后的jar,hadoop-lzo-0.4.21-SNAPSHOT.jar则为我们需要的jar】
[hadoop@hadoop001 target]$ pwd
/home/hadoop/app/hadoop-lzo-master/target
[hadoop@hadoop001 target]$ ll
total 448
drwxrwxr-x 2 hadoop hadoop 4096 Apr 17 13:43 antrun
drwxrwxr-x 5 hadoop hadoop 4096 Apr 17 13:43 apidocs
drwxrwxr-x 5 hadoop hadoop 4096 Apr 17 13:42 classes
drwxrwxr-x 3 hadoop hadoop 4096 Apr 17 13:42 generated-sources
-rw-rw-r-- 1 hadoop hadoop 180807 Apr 17 13:43 hadoop-lzo-0.4.21-SNAPSHOT.jar
-rw-rw-r-- 1 hadoop hadoop 184553 Apr 17 13:43 hadoop-lzo-0.4.21-SNAPSHOT-javadoc.jar
-rw-rw-r-- 1 hadoop hadoop 52024 Apr 17 13:43 hadoop-lzo-0.4.21-SNAPSHOT-sources.jar
drwxrwxr-x 2 hadoop hadoop 4096 Apr 17 13:43 javadoc-bundle-options
drwxrwxr-x 2 hadoop hadoop 4096 Apr 17 13:43 maven-archiver
drwxrwxr-x 3 hadoop hadoop 4096 Apr 17 13:42 native
drwxrwxr-x 3 hadoop hadoop 4096 Apr 17 13:43 test-classes
【上传jar包】
将hadoop-lzo-0.4.21-SNAPSHOT.jar包复制到我们的hadoop的$HADOOP_HOME/share/hadoop/common/目录下才能被hadoop使用
[hadoop@hadoop001 hadoop-lzo-master]$ cp hadoop-lzo-0.4.21-SNAPSHOT.jar ~/app/hadoop-2.6.0-cdh5.7.0/share/hadoop/common/
[hadoop@hadoop001 hadoop-lzo-master]$ ll ~/app/hadoop-2.6.0-cdh5.7.0/share/hadoop/common/hadoop-lzo*
-rw-rw-r-- 1 hadoop hadoop 180807 Apr 17 13:52 /home/hadoop/app/hadoop-2.6.0-cdh5.7.0/share/hadoop/common/hadoop-lzo-0.4.21-SNAPSHOT.jar
【配置hadoop文件core-site.xml 和mapred-site.xml】
【注意】在配置之前先把集群给关了,否则可能会有坑,配置完以后关闭集群,再开启,启动不起来,说端口被占用,但是jps查不到,也就是说进程处于家私状态了
[hadoop@hadoop001 ~]$ vim ~/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop/core-site.xml
<property>
<name>io.compression.codecs</name>
<value>org.apache.hadoop.io.compress.GzipCodec,
org.apache.hadoop.io.compress.DefaultCodec,
org.apache.hadoop.io.compress.BZip2Codec,
org.apache.hadoop.io.compress.SnappyCodec,
com.hadoop.compression.lzo.LzoCodec,
com.hadoop.compression.lzo.LzopCodec
</value>
</property>
<property>
<name>io.compression.codec.lzo.class</name>
<value>com.hadoop.compression.lzo.LzoCodec</value>
</property>
【解析】:主要是配置com.hadoop.compression.lzo.LzoCodec、com.hadoop.compression.lzo.LzopCodec压缩类
io.compression.codec.lzo.class必须指定为LzoCodec非LzopCodec,不然压缩后的文件不会支持分片的
vim ~/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop/mapred-site.xml
<property>
<name>mapreduce.map.output.compress</name>
<value>true</value>
</property>
<property>
<name>mapreduce.map.output.compress.codec</name>
<value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>
<property>
<name>mapreduce.output.fileoutputformat.compress</name>
<value>true</value>
</property>
<property>
<name>mapreduce.output.fileoutputformat.compress.codec</name>
<value>org.apache.hadoop.io.compress.BZip2Codec</value>
</property>
【启动hadoop】
[hadoop@hadoop001 sbin]$ pwd
/home/hadoop/app/hadoop/sbin
[hadoop@hadoop001 sbin]$start-all.sh
【启动hive测试分片 ##以下内容都是在hive的默认数据库里进行的】
【建表】
CREATE EXTERNAL TABLE g6_access_lzo (
cdn string,
region string,
level string,
time string,
ip string,
domain string,
url string,
traffic bigint)
PARTITIONED BY (
day string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS INPUTFORMAT "com.hadoop.mapred.DeprecatedLzoTextInputFormat"
OUTPUTFORMAT "org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat"
LOCATION '/g6/hadoop/access/compress';
【注意】#创建LZO压缩文件测试表,若hadoop的common目录没有hadoop-lzo的jar,就会报类DeprecatedLzoTextInputFormat找不到异常
【刷新分区】
alter table g6_access_lzo add if not exists partition(day='20190418');
【从本地load LZO压缩数据到表g6_access_lzo】
LOAD DATA LOCAL INPATH '/home/hadoop/data/part-r-00000.lzo' OVERWRITE INTO TABLE g6_access_lzo partition (day="20190418");
[hadoop@hadoop001 sbin]$ hadoop fs -du -s -h /g6/hadoop/access/compress/day=20190418/*
28.6 M 28.6 M /g6/hadoop/access/compress/day=20190418/part-r-00000.lzo
【查询测试】
hive (default)> select count(1) from g6_access_lzo;
##日志查看##Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.69 sec HDFS Read: 29982759 HDFS Write: 57 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 690 msec
【结论1】因为我们的块大小是给设定了10M,而part-r-00000.lzo这个lzo压缩文件的大小远远大于10M,但是我们可以看见Map只有一个,可见lzo是不支持分片的
【lzo支持分片测试】
#开启压缩,生成的压缩文件格式必须为设置为LzopCodec,lzoCode的压缩文件格式后缀为.lzo_deflate是无法创建索引的。
SET hive.exec.compress.output=true;
SET mapreduce.output.fileoutputformat.compress.codec=com.hadoop.compression.lzo.LzopCodec;
【创建分片测试表】
create table g6_access_lzo_split
STORED AS INPUTFORMAT "com.hadoop.mapred.DeprecatedLzoTextInputFormat"
OUTPUTFORMAT "org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat"
as select * from g6_access;
hive (default)> desc formatted g6_access_lzo_split; #找到表数据的位置
Location: hdfs://hadoop001:9000/user/hive/warehouse/g6_access_lzo_split
[hadoop@hadoop001 sbin]$ hadoop fs -du -s -h /user/hive/warehouse/g6_access_lzo_split/*
28.9 M 28.9 M /user/hive/warehouse/g6_access_lzo_split/000000_0.lzo
#构建LZO文件索引,使用我们之前打的jar包中的工具类
[hadoop@hadoop001 ~]$ hadoop jar ~/app/hadoop-2.6.0-cdh5.7.0/share/hadoop/common/hadoop-lzo-0.4.21-SNAPSHOT.jar \
com.hadoop.compression.lzo.LzoIndexer /user/hive/warehouse/wsktest.db/page_views2_lzo_split
[hadoop@hadoop001 sbin]$ hadoop fs -du -s -h /user/hive/warehouse/g6_access_lzo_split/*
28.9 M 28.9 M /user/hive/warehouse/g6_access_lzo_split/000000_0.lzo
2.3 K 2.3 K /user/hive/warehouse/g6_access_lzo_split/000000_0.lzo.index
【查询测试】
hive (default)> select count(1) from g6_access_lzo_split;
Stage-Stage-1: Map: 3 Reduce: 1 Cumulative CPU: 5.85 sec HDFS Read: 30504786 HDFS Write: 57 SUCCESS
Total MapReduce CPU Time Spent: 5 seconds 850 msec
【结论2】这里我们可以卡到map是3,也就是说lzo压缩文件构建索引以后是支持分片的
【总结】
大数据中常见的压缩格式只有bzip2是支持数据分片的,lzo在文件构建索引后才会支持数据分片
【参考博客】
https://my.oschina.net/u/4005872/blog/3036700
https://blog.csdn.net/qq_32641659/article/details/89339471