多线程同步
win32 api提供了四种实现多线程同步的技术:临界区(critical section)、互斥变量(mutex)、信号量(semaphore)、事件(event)。
作用领域:
1、临界区:通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。
2、互斥量:为协调共同对一个共享资源的单独访问而设计的。
3、信号量:为控制一个具有有限数量用户资源而设计。
4、事件:用来通知线程有一些事件已发生,从而启动后继任务的开始。
1、临界区(Critical Section)
保证在某一时刻只有一个线程能访问数据的简便办法。在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操作共享资源的目的。
临界区包含两个操作原语: EnterCriticalSection()进入临界区 LeaveCriticalSection()离开临界区
2、互斥量(Mutex)
互斥量跟临界区很相似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。当前占据资源的线程在任务处理完后应将拥有的互斥对象交出,以便其他线程在获得后得以访问资源。互斥量比临界区复杂。因为使用互斥不仅仅能够在同一应用程序不同线程中实现资源的安全共享,而且可以在不同应用程序的线程之间实现对资源的安全共享。
互斥量包含的几个操作原语:
CreateMutex()创建一个互斥量
OpenMutex()打开一个互斥量
ReleaseMutex()释放互斥量
WaitForMultipleObjects()等待互斥量对象
3、信号量(Semaphores)
信号量对象对线程的同步方式与前面几种方法不同,信号允许多个线程同时使用共享资源,这与操作系统中的PV操作相同。它指出了同时访问共享资源的线程最大数目。它允许多个线程在同一时刻访问同一资源,但是需要限制在同一时刻访问此资源的最大线程数目。在用CreateSemaphore()创建信号量时即要同时指出允许的最大资源计数和当前可用资源计数。一般是将当前可用资源计数设置为最大资源计数,每增加一个线程对共享资源的访问,当前可用资源计数就会减1,只要当前可用资源计数是大于0的,就可以发出信号量信号。但是当前可用计数减小到0时则说明当前占用资源的线程数已经达到了所允许的最大数目,不能在允许其他线程的进入,此时的信号量信号将无法发出。线程在处理完共享资源后,应在离开的同时通过ReleaseSemaphore()函数将当前可用资源计数加1。在任何时候当前可用资源计数决不可能大于最大资源计数。
PV操作及信号量的概念都是由荷兰科学家E.W.Dijkstra提出的。信号量S是一个整数,S大于等于零时代表可供并发进程使用的资源实体数,但S小于零时则表示正在等待使用共享资源的进程数。
P操作申请资源:
(1)S减1;
(2)若S减1后仍大于等于零,则进程继续执行;
(3)若S减1后小于零,则该进程被阻塞后进入与该信号相对应的队列中,然后转入进程调度。
V操作 释放资源:
(1)S加1;
(2)若相加结果大于零,则进程继续执行;
(3)若相加结果小于等于零,则从该信号的等待队列中唤醒一个等待进程,然后再返回原进程继续执行或转入进程调度。
信号量包含的几个操作原语:
CreateSemaphore()创建一个信号量
OpenSemaphore()打开一个信号量
ReleaseSemaphore()释放信号量
WaitForSingleObject()等待信号量
4、事件(Event)
事件对象也可以通过通知操作的方式来保持线程的同步。并且可以实现不同进程中的线程同步操作。
总结:
1.互斥量与临界区的作用非常相似,但互斥量是可以命名的,也就是说它可以跨越进程使用。所以创建互斥量需要的资源更多,所以如果只为了在进程内部是用的话使用临界区会带来速度上的优势并能够减少资源占用量。因为互斥量是跨进程的互斥量一旦被创建,就可以通过名字打开它。
2.互斥量(Mutex),信号灯(Semaphore),事件(Event)都可以被跨越进程使用来进行同步数据操作,而其他的对象与数据同步操作无关,但对于进程和线程来讲,如果进程和线程在运行状态则为无信号状态,在退出后为有信号状态。所以可以使用WaitForSingleObject来等待进程和线程退出。[重点]
3.通过互斥量可以指定资源被独占的方式使用,但如果有下面一种情况通过互斥量就无法处理,比如现在一位用户购买了一份三个并发访问许可的数据库系统,可以根据用户购买的访问许可数量来决定有多少个线程/进程能同时进行数据库操作,这时候如果利用互斥量就没有办法完成这个要求,信号灯对象可以说是一种资源计数器。
——————————————————————————————————————————————————————————————
代码示例:
1、临界区、互斥变量[两者相似]
1 #include <windows.h>
2 #include <iostream>
3 using namespace std;
4
5 DWORD WINAPI Fun1Proc(LPVOID lpParameter);
6 DWORD WINAPI Fun2Proc(LPVOID lpParameter);
7
8 int index=0;
9 int tickets=100;
10 //HANDLE hMutex;
11 CRITICAL_SECTION CriticalSection;
12
13 void main()
14 {
15 HANDLE hThread1,hThread2;
16 //hMutex=CreateMutex(NULL,FALSE,NULL);
17 //TRUE代表主线程拥有互斥对象 但是主线程没有释放该对象 互斥对象谁拥有谁释放
18 //FLASE代表当前没有线程拥有这个互斥对象
19 InitializeCriticalSection(&CriticalSection);
20
21 hThread1=CreateThread(NULL,0,Fun1Proc,NULL,0,NULL);
22 hThread2=CreateThread(NULL,0,Fun2Proc,NULL,0,NULL);
23 CloseHandle(hThread1);
24 CloseHandle(hThread2);
25 Sleep(4000);
26 }
27
28 DWORD WINAPI Fun1Proc(LPVOID lpParameter)
29 {
30 while (true)
31 {
32 //WaitForSingleObject(hMutex,INFINITE);
33 EnterCriticalSection(&CriticalSection);
34 if (tickets>0)
35 {
36 cout<<"t1: "<<tickets--<<endl;
37
38 }
39 else
40 {
41 break;
42 }
43 // ReleaseMutex(hMutex);
44 LeaveCriticalSection(&CriticalSection);
45
46 }
47
48 return 0;
49 }
50
51 DWORD WINAPI Fun2Proc(LPVOID lpParameter)
52 {
53 while (true)
54 {
55 //WaitForSingleObject(hMutex,INFINITE);
56 EnterCriticalSection(&CriticalSection);
57 if (tickets>0)
58 {
59 cout<<"t2: "<<tickets--<<endl;
60 }
61 else
62 {
63 break;
64 }
65 //ReleaseMutex(hMutex);
66 LeaveCriticalSection(&CriticalSection);
67
68 }
69 return 0;
70 }
2、信号量
1 #include <windows.h>
2 #include <iostream>
3 using namespace std;
4
5 HANDLE hSemaphore;
6 LONG cMax = 10; // 最大信号量个数
7
8 DWORD WINAPI ThreadProc1(LPVOID pParam)
9 {
10 WaitForSingleObject(hSemaphore, INFINITE);
11 cout << "线程一正在执行!\n";
12 ReleaseSemaphore(hSemaphore, 1, NULL);
13 return 0;
14 }
15 DWORD WINAPI ThreadProc2(LPVOID pParam)
16 {
17 WaitForSingleObject(hSemaphore, INFINITE);
18 cout << "线程二正在执行!\n";
19 ReleaseSemaphore(hSemaphore, 1, NULL);
20 return 0;
21 }
22 DWORD WINAPI ThreadProc3(LPVOID pParam)
23 {
24 WaitForSingleObject(hSemaphore, INFINITE);
25 cout << "线程三正在执行!\n";
26 ReleaseSemaphore(hSemaphore, 1, NULL);
27 return 0;
28 }
29
30
31 void main()
32 {
33 hSemaphore = CreateSemaphore(NULL,cMax,cMax,NULL);
34
35 if (hSemaphore == NULL)
36 {
37 cout << "信号量对象创建失败!" << endl;
38 return;
39 }
40 HANDLE hThread1,hThread2,hThread3;
41
42 hThread1 = CreateThread(NULL,0,ThreadProc1,NULL,0,NULL);
43 hThread2 = CreateThread(NULL,0,ThreadProc2,NULL,0,NULL);
44 hThread3 = CreateThread(NULL,0,ThreadProc3,NULL,0,NULL);
45 CloseHandle(hThread1);
46 CloseHandle(hThread2);
47 CloseHandle(hThread3);
48
49 Sleep(4000);
50 }
3、事件
1 #include <windows.h>
2 #include <iostream>
3 using namespace std;
4
5 DWORD WINAPI Fun1Proc(LPVOID lpParameter);
6 DWORD WINAPI Fun2Proc(LPVOID lpParameter);
7
8 int tickets=100;
9 HANDLE g_hEvent;
10 void main()
11 {
12 HANDLE hThread1;
13 HANDLE hThread2;
14 g_hEvent=CreateEvent(NULL,FALSE,FALSE,L"tickets");
15 if(g_hEvent)
16 {
17 if(ERROR_ALREADY_EXISTS==GetLastError())
18 {
19 cout<<"only one instance can run!"<<endl;
20 return;
21 }
22 }
23 hThread1=CreateThread(NULL,0,Fun1Proc,NULL,0,NULL);
24 hThread2=CreateThread(NULL,0,Fun2Proc,NULL,0,NULL);
25 CloseHandle(hThread1);
26 CloseHandle(hThread2);
27 SetEvent(g_hEvent);
28
29 Sleep(4000);
30 CloseHandle(g_hEvent);
31 }
32 DWORD WINAPI Fun1Proc(LPVOID lpParameter)
33 {
34 while(TRUE)
35 {
36 WaitForSingleObject(g_hEvent,INFINITE);
37 if(tickets>0)
38 {
39 Sleep(100);
40 cout<<"thread1 sell ticket : "<<tickets--<<endl;
41 }
42 else
43 {
44 break;
45 }
46 SetEvent(g_hEvent);
47 }
48 SetEvent(g_hEvent);
49 return 0;
50 }
51 DWORD WINAPI Fun2Proc(LPVOID lpParameter)
52 {
53 while(TRUE)
54 {
55 WaitForSingleObject(g_hEvent,INFINITE);
56 if(tickets>0)
57 {
58 Sleep(100);
59 cout<<"thread2 sell ticket : "<<tickets--<<endl;
60 }
61 else
62 {
63 break;
64 }
65 SetEvent(g_hEvent);
66 }
67 SetEvent(g_hEvent);
68 return 0;
69 }