Hadoop是怎么分块的
http://blog.chinaunix.net/space.php?uid=20602285&do=blog&cuid=2273160
<name>dfs.block.size</name>
<value>67108864</value>
<description>The default block size for new files.</description>
</property>
<name>dfs.replication</name>
<value>3</value>
<description>Default block replication.
The actual number of replications can be specified when the file is created.
The default is used if replication is not specified in create time.
</description>
</property>
return Math.max(minSize, Math.min(goalSize, blockSize));
}
splits = JobClient.readSplitFile(splitFile);
} finally {
splitFile.close();
}
numMapTasks = splits.length;
maps = new TaskInProgress[numMapTasks];
============================================================================
http://www.geminikwok.com/2011/07/26/hadoopæ¯æä¹åå—ç/
hadoop的分块有两部分。
第一部分就是数据的划分(即把File划分成Block),这个是物理上的划分,数据文件上传到HDFS里的时候,需要划分成一块一块,每块的大小由hadoop-default.xml里配置选项进行划分(大小不足一块时,便按实际大小存放):
<property>
<name>dfs.block.size</name>
<value>67108864</value>
<description>The default block size for new files.</description></property>
这里设置的是每个块64MB。
数据划分的时候也可以设置备份的份数:
<property>
<name>dfs.replication</name>
<value>3</value>
<description>Default block replication. The actual number of replications can be specified when the file is created. The default is used if replication is not specified in create time. </description>
</property>
具体的物理划分步骤由Namenode决定,下面hadoop中的第二种划分,用来决定M/R运行时,一个map处理的数据量。
在hadoop中第二种划分是由InputFormat这个接口来定义的,其中有个getSplits方法。这里有一个新的概念:fileSplit。每个map处理一个fileSplit,所以有多少个fileSplit就有多少个map(map数并不是单纯的由用户设置决定的)。
我们来看一下hadoop分配splits的源码:
if ((length != 0) && isSplitable(fs, path)) {
long blockSize = file.getBlockSize();
long splitSize = computeSplitSize(goalSize, minSize, blockSize);
long bytesRemaining = length;
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(new FileSplit(path, length-bytesRemaining, splitSize, blkLocations[blkIndex].getHosts()));
bytesRemaining -= splitSize; }
if (bytesRemaining != 0) {
splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkLocations.length-1].getHosts())); }
} else if (length != 0) {
splits.add(new FileSplit(path, 0, length,blkLocations[0].getHosts()));
} else {
//Create empty hosts array for zero length files
splits.add(new FileSplit(path, 0, length, new String[0]));
}
}
从代码可以看出,一个块为一个splits,即一个map,只要搞清楚一个块的大小,就能计算出运行时的map数。而一个split的大小是由goalSize, minSize, blockSize这三个值决定的。computeSplitSize的逻辑是,先从goalSize和blockSize两个值中选出最小的那个(比如一般不设置map数,这时blockSize为当前文件的块size,而goalSize是文件大小除以用户设置的map数得到的,如果没设置的话,默认是1),在默认的大多数情况下,blockSize比较小。然后再取bloceSize和minSize中最大的那个。而minSize如果不通过”mapred.min.split.size”设置的话(”mapred.min.split.size”默认为0),minSize为1,这样得出的一个splits的size就是blockSize,即一个块一个map,有多少块就有多少map。
上面说的是splitable的情况,unsplitable可以根据实际情况来计算,一般为一个文件一个map。
下面是摘自网上的一个总结:
几个简单的结论:
1. 一个split不会包含零点几或者几点几个Block,一定是包含大于等于1个整数个Block
2. 一个split不会包含两个File的Block,不会跨越File边界
3. split和Block的关系是一对多的关系
4. maptasks的个数最终决定于splits的长度
还有一点需要说明,在FileSplit类中,有一项是private String[] hosts;
看上去是说明这个FileSplit是放在哪些机器上的,实际上hosts里只是存储了一个Block的冗余机器列表。
比如有个fileSplit 有4个block: Block11, Block12, Block13,Block14,这个FileSplit中的hosts里最终存储的是Block11本身和其备份所在的机器列表,也就是说 Block12,Block13,Block14存在哪些机器上没有在FileSplit中记录。
FileSplit中的这个属性有利于调度作业时候的数据本地性问题。如果一个tasktracker前来索取task,jobtracker就会找个 task给他,找到一个maptask,得先看这个task的输入的FileSplit里hosts是否包含tasktracker所在机器,也就是判断 和该tasktracker同时存在一个机器上的datanode是否拥有FileSplit中某个Block的备份。
但总之,只能牵就一个Block,其他Block就要从网络上传。不过对于默认大多数情况下的一个block对应一个map,可以通过修改hosts使map的本地化数更多一些。 在讲block的hosts传给fileSplit时,hosts中的主机地址可以有多个,表示map可以从优先从这些hosts中选取(只是优先,但hdfs还很可能根据当时的网络负载选择不是hosts中的主机起map task)。
知道这个特性之后,可以修改传回给fileSplit的hosts,在列表中只写block所在的那些hosts,这样hdfs就会优先将这些map放到这些hosts上去执行,由于hosts上有该block,就省掉了网络传输数据的时间。
这样做的话,在job很多的时候,可能会出现hot spot,即数据用的越多,它所在hosts上的map task就会越多。所以在考虑修改传给fileSplit的时候要考虑平衡诸多因素