python的人脸识别库face_recognition
代码:
import cv2 import numpy as np import face_recognition img_train = face_recognition.load_image_file('query/1679370481783.jpg') img_train = cv2.cvtColor(img_train, cv2.COLOR_BGR2RGB) img_test = face_recognition.load_image_file('query/14.jpg') img_test = cv2.cvtColor(img_test, cv2.COLOR_BGR2RGB) train_faces = face_recognition.face_locations(img_train) test_faces = face_recognition.face_locations(img_test) train_encodes = face_recognition.face_encodings(img_train, train_faces) test_encode = face_recognition.face_encodings(img_test, test_faces)[0] copy1 = img_train.copy() copy2 = img_test.copy() print('共检测到第%s张人脸' % len(train_faces)) for i,face in enumerate(train_faces): train_encode = train_encodes[i] flag = face_recognition.compare_faces([train_encode], test_encode, tolerance=0.5)[0] if flag: print('第%s张:匹配' % str(i+1)) cv2.rectangle(copy1, (face[3], face[0]),(face[1], face[2]), (0,255,0), 1) else: print('第%s张:不匹配' % str(i+1)) pass cv2.imshow('base-img', copy1) cv2.imshow('search-img', copy2) cv2.waitKey(delay=0)
效果:
本文来自博客园,作者:河北大学-徐小波,转载请注明原文链接:https://www.cnblogs.com/xuxiaobo/p/17239529.html

【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步