高精度+前缀和+差分
高精度+前缀和+差分
高精度
高精度加法
- 大整数存储:将数字存到数组里,第一个位置存个位,第二个位置存十位......
- 从\(A_0+B_0\)开始算起,算个位,满十进一
易错点:
- 将数字存在字符串里面,然后倒序转换进数组
- 在函数内模拟整数各数位的加法,在十位的时候加上个位满十溢出的值,最后倒序输出即可
高精度加法算法模板:
// C = A + B, A >= 0, B >= 0
vector<int> add(vector<int> &A, vector<int> &B)
{
if (A.size() < B.size()) return add(B, A);
vector<int> C;
int t = 0;
for (int i = 0; i < A.size(); i ++ )
{
t += A[i];
if (i < B.size()) t += B[i];
C.push_back(t % 10);
t /= 10;
}
if (t) C.push_back(t);
return C;
}
int main()
{
string a, b;
cin>>a>>b;
vector<int> A, B;
for(int i = a.size() - 1; i >= 0; i --) A.push_back(a[i] - '0');
for(int j = b.size() - 1; j >= 0; j --) B.push_back(b[j] - '0');
auto C = add(A, B);
for(int i = C.size() - 1; i >= 0; i --) printf("%d",C[i]);
return 0;
}
高精度减法
A3 A2 A1 A0
- B2 B1 B0
\(A >= B\) 计算 \(A - B\)
\(A < B\) 计算 \(- ( B - A )\)
\(t\) 表示是否借位
\(A_2 - B_2 - t >= 0\) $A_2 - B_2 - t $
\(A_2 - B_2 - t < 0\) $A_2 - B_2 + 10 - t $
注意点:
- 在\(cmp\)函数中最后要记得的返回true,因为判断的是是否 \(A >= B\)
- 不要忘记去除答案的前导0
高精度减法算法模板:
//判断A>=B
bool cmp(vector<int> &A, vector<int> &B)
{
if(A.size() != B.size()) return A.size() > B.size();
for(int i = A.size() - 1; i >= 0; i --)
{
if(A[i] != B[i]) return A[i] > B[i];
}
return true;
}
// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{
vector<int> C;
int t = 0;
for (int i = 0; i < A.size(); i ++ )
{
t = A[i] - t;
if (i < B.size()) t -= B[i];
C.push_back((t + 10) % 10);
if (t < 0) t = 1;
else t = 0;
}
while (C.size() > 1 && C.back() == 0) C.pop_back(); //去除前导0
return C;
}
int main()
{
string a, b;
cin>>a>>b;
vector<int> A, B;
for(int i = a.size() - 1; i >= 0; i --) A.push_back(a[i] - '0');
for(int j = b.size() - 1; j >= 0; j --) B.push_back(b[j] - '0');
if(cmp(A, B))
{
auto C = sub(A, B);
for(int i = C.size() - 1; i >= 0; i --) printf("%d",C[i]);
}
else
{
auto C = sub(B, A);
printf("-");
for(int i = C.size() - 1; i >= 0; i --) printf("%d",C[i]);
}
return 0;
}
高精度乘法
123 * 12
3 * 12 = 36 36 %10 = 6 36 / 10 = 3
2 * 12 + 3 = 27 27 % 10 = 7 27 / 10 = 2
1 * 12 + 2 = 14 14 % 10 = 4 14 / 10 = 1
0 * 12 + 1 = 1 1 % 10 = 1
1476
A5 A4 A3 A2 A1 A0
* b
进位:t
个位:A0 * b % 10 t = A0 * b / 10
十位:(A1 * b + t ) % 10 t = (A1 * b + t ) / 10
注意点:
-
注意一下进位的t,到最后可能已经运算完了但是t里面还存着首位的1,所以可以在最后加上去
所以也可以在循环里面不考虑t,在循环结束后加上 if(t) C.push_back(t); 即可
高精度乘低精度算法模板:
// C = A * b, A >= 0, b >= 0
vector<int> mul(vector<int> &A, int b)
{
vector<int> C;
int t = 0;
for (int i = 0; i < A.size() || t; i ++ )
{
if (i < A.size()) t += A[i] * b;
C.push_back(t % 10);
t /= 10;
}
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
高精度除法
1234 ➗ 11
r = 0 * 10 + 1 = 1 1 / 11 = 0 r = 1 % 11 = 1
r = 1 * 10 + 2 = 12 12 / 11 = 1 r = 12 % 11 = 1
r = 1 * 10 + 3 = 13 13 / 11 = 1 r = 13 % 11 = 2
r = 2 * 10 + 4 = 24 24 / 11 = 2 r = 14 % 11 = 2
r = 0 * 10 + 2 = 2 2 / 11 = 0 r= 2 % 11 = 2
1234 ➗ 11 = 112 ...... 2
A3 A2 A1 A0 ➗ b
r = 0 * 10 + A1 r / b = C3 r = r % b
r = r * 10 + A2 r / b = C2 r = r % b
注意点:
- 注意要reverse,以及头文件algorithm,这里是顺序求出答案存入数组的
高精度除以低精度算法模板:
// A / b = C ... r, A >= 0, b > 0
vector<int> div(vector<int> &A, int b, int &r)
{
vector<int> C;
r = 0;
for (int i = A.size() - 1; i >= 0; i -- )
{
r = r * 10 + A[i];
C.push_back(r / b);
r %= b;
}
reverse(C.begin(), C.end());
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
前缀和与差分
一维前缀和
\(S[i] = a[1] + a[2] + ... a[i]\)
建议从a[1]开始存元素
预处理O(n) 询问O(1)
- 如何求\(S[i]\)
S[0] = 0;
for(int i = 1; i <= n; i ++)
S[i] = S[i - 1] + a[i];
- 作用:可以快速求出原数组中一段数\([l,r]\)的和,
a[l] + ... + a[r] = S[r] - S[l - 1];
一维前缀和算法模板:
S[i] = a[1] + a[2] + ... a[i]
a[l] + ... + a[r] = S[r] - S[l - 1]
二维前缀和
a[i][j] 表示元素
S[i][j] 表示左上角矩形里面所有元素的和
a b c
d e f
g h i
\(a[2][2]-a[3][3]:s[3][3]-s[1][3]-s[3][1]+s[1][1]\)
那么要求以 \(a[x_1][y_1]\)和 \(a[x_2][y_2]\) 为顶点的矩形里面的元素的和,就是 \(s[x_2][y_2]-s[x_1-1][y_2]-s[x_2][y_1-1]+s[x_1-1][y_1-1]\)
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j <= m; j ++)
{ //预处理
s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
}
}
//询问
s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1];
二维前缀和算法模板:
S[i, j] = 第i行j列格子左上部分所有元素的和
以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:
S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]
一维差分
差分是前缀和的逆运算
由a[1] a[2] a[3] 构造 b[1] b[2] b[3] 数组,使得a[i] = b[1] + ... + b[i], 也就是说 a[] 是 b[] 的前缀和
所以 b[1] = a[1] b[2] = a[2] - a[1] b[i] = a[i] - a[i - 1]
要给 [l , r] 之间的元素都加上c a[l] + c , a[ l + 1] + c ,, O(n)
差分:O(n) 构造差分数组,更改b[],再求一遍前缀和,就可以得到a[]
差分O(n) 修改O(1)
a[] 是 b[] 的前缀和 将b[l] + c之后,a[l] 往后也会加上c,但是将a[r + 1] - c , 就可以取消对于后面的元素的影响了
int q[maxn], b[maxn];
for(int i = 1; i <= n; i ++) scanf("%d", &q[i]);
for(int i = 1; i <= n; i ++) b[i] = q[i] - q[i - 1]; //求差分数组
scanf("%d%d%d", &l, &r, &c);
b[l] += c;
b[r + 1] -= c;
//进行增加操作
for(int i = 1; i <= n; i ++) q[i] = b[i] + q[i - 1]; //前缀和求原数组
一维差分算法模板:
给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c
二维差分
原矩阵 \(a[i][j]\)
构造差分矩阵 \(b[i][j]\)
void insert(int x1, int y1, int x2, int y2, int c)
{
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y2 + 1] += c;
}
//构建差分数组
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j <= m; j ++)
{
insert(i, j, i, j, q[i][j]);
}
}
//将元素加上c
int x1, y1, x2, y2, c;
scanf("%d%d%d%d%d", &x1, &y1, &x2, &y2, &c);
insert(x1, y1, x2, y2, c);
//求二维前缀和,还原为原数组
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j <= m; j ++)
{
q[i][j] = q[i - 1][j] + q[i][j - 1] - q[i - 1][j - 1] + b[i][j];
}
}
二维差分算法模板:
给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:
S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c