QuantLib 金融计算——随机过程之一般 Black Scholes 过程
如果未做特别说明,文中的程序都是 Python3 代码。
QuantLib 金融计算——随机过程之一般 Black Scholes 过程
载入模块
import QuantLib as ql
import pandas as pd
import numpy as np
import seaborn as sn
print(ql.__version__)
1.12
一般 Black Scholes 过程
quantlib-python 中 Black Scholes 框架下常见的几种随机过程均派生自基类 GeneralizedBlackScholesProcess
,而 GeneralizedBlackScholesProcess
模拟下列 SDE 描述的一维随机过程:
\[d \ln S_t = \left( r ( t ) - q ( t ) - \frac { \sigma \left( t , S_t \right)^2 } 2 \right) d t + \sigma d W_t
\]
等式使用风险中性漂移而不是一般漂移 \(\mu\)。风险中性利率由股息率 \(q(t)\) 调整,并且相应的扩散项是 \(\sigma\)。
作为基类,GeneralizedBlackScholesProcess
的构造函数为
GeneralizedBlackScholesProcess(x0,
dividendTS,
riskFreeTS,
blackVolTS)
其中:
x0
:QuoteHandle
对象,表示 SDE 的起始值;dividendTS
:YieldTermStructureHandle
对象,表示股息率的期限结构riskFreeTS
:YieldTermStructureHandle
对象,表示无风险利率的期限结构blackVolTS
:BlackVolTermStructureHandle
对象,表示波动率的期限结构
GeneralizedBlackScholesProcess
提供了相应的检查器,返回构造函数接受的关键参数:
stateVariable
;dividendYield
;riskFreeRate
;blackVolatility
从 StochasticProcess1D
继承来的离散化函数 evolve
,描述 SDE 从 \(t\) 到 \(t + \Delta t\) 的变化。
QuantLib 提供了一些具体的派生类,这些类代表众所周知的具体过程,如
BlackScholesProcess
:没有股息率的一般 BS 过程;BlackScholesMertonProcess
:一般 BS 过程;BlackProcess
:一般 Black 过程;GarmanKohlagenProcess
:包含外汇利率的一般 BS 过程
这些派生类在构造和调用方式上大同小异,在下面的例子中,我们将建立一个具有平坦无风险利率、股息率和波动率期限结构的 Black-Scholes-Merton 过程,并画出模拟结果。
def testingStochasticProcesses1():
refDate = ql.Date(27, ql.January, 2019)
riskFreeRate = 0.0321
dividendRate = 0.0128
spot = 52.0
vol = 0.2144
cal = ql.China()
dc = ql.ActualActual()
rdHandle = ql.YieldTermStructureHandle(
ql.FlatForward(refDate, riskFreeRate, dc))
rqHandle = ql.YieldTermStructureHandle(
ql.FlatForward(refDate, dividendRate, dc))
spotQuote = ql.SimpleQuote(spot)
spotHandle = ql.QuoteHandle(
ql.SimpleQuote(spot))
volHandle = ql.BlackVolTermStructureHandle(
ql.BlackConstantVol(refDate, cal, vol, dc))
bsmProcess = ql.BlackScholesMertonProcess(
spotHandle, rqHandle, rdHandle, volHandle)
seed = 1234
unifMt = ql.MersenneTwisterUniformRng(seed)
bmGauss = ql.BoxMullerMersenneTwisterGaussianRng(unifMt)
dt = 0.004
numVals = 250
bsm = pd.DataFrame()
for i in range(10):
bsmt = pd.DataFrame(
dict(
t=np.linspace(0, dt * numVals, numVals + 1),
path=np.nan,
n='p' + str(i)))
bsmt.loc[0, 'path'] = spotQuote.value()
x = spotQuote.value()
for j in range(1, numVals + 1):
dw = bmGauss.next().value()
x = bsmProcess.evolve(bsmt.loc[j, 't'], x, dt, dw)
bsmt.loc[j, 'path'] = x
bsm = pd.concat([bsm, bsmt])
sn.lineplot(
x='t', y='path',
data=bsm,
hue='n', legend=None)
testingStochasticProcesses1()
扩展阅读
★ 持续学习 ★ 坚持创作 ★