走进LAPACK(三)
五、BLAS和LAPACK的常用函数
1、矩阵相乘(Matrix multiplication,A×B)
BLAS函数(dgemm,zgemm)
函数原型:call dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc) (复数类型省略,下同)
输出:c Overwritten by the m-by-n matrix (alpha*op(A)*op(B) + beta*C).
program main implicit none real(8) :: aaa(2,2),bbb(2,1),ccc(2,1) aaa=reshape( (/1,3,2,4/), (/2,2/) ) bbb=reshape( (/3,5/), (/2,1/) ) call dgemm( 'N', 'N', 2, 1, 2, 1.0d0, aaa, 2, bbb, 2, 0.0d0, ccc, 2 ) print *,ccc end program输出结果
2、矩阵左除(Matrix left division,A\B)
lapack函数(dgesv, zgesv (square matrices); dgelss, zgelss (non-square matrices))
函数原型:call dgesv( n, nrhs, a, lda, ipiv, b, ldb, info )
输出:b Overwritten by the solution matrix X
函数原型:call dgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, info)
输出:b Overwritten by the n-by-nrhs solution matrix X.
program main implicit none real(8) :: aaa(2,1),bbb(2,1),ccc(1,1) real(8) :: sss(1) integer :: rank,lwork,work(100),info lwork=100 aaa=reshape( (/1,2/), (/2,1/) ) bbb=reshape( (/1.1,2.1/), (/2,1/) ) call dgelss( 2, 1, 1, aaa, 2, bbb, 2, sss, 0.0d0, rank, work, lwork ,info ) ccc=bbb(1,1) print *,ccc end program
输出结果
3、矩阵右除(Matrix right division,A/B)
lapack函数(dgesv, zgesv (square matrices); dgelss, zgelss (non-square matrices))
矩阵左除的变形
program main use lapack95 implicit none real(8) :: aaa(1,2),bbb(1,2),ccc(1,1),aaa1(2,1),bbb1(2,1) real(8) :: sss(1) integer :: rank,lwork,work(100),info lwork=100 aaa=reshape( (/1.1,2.1/), (/1,2/) ) bbb=reshape( (/1,2/), (/1,2/) ) aaa1=transpose(aaa) bbb1=transpose(bbb) call dgelss( 2, 1, 1, bbb1, 2, aaa1, 2, sss, 0.0d0, rank, work, lwork ,info ) ccc=aaa1(1,1) print *,ccc end program
4、对角相似变换(diagonal similarity transform,)
lapack函数(dgebal, zgebal)
函数原型:call dgebal(job, n, a, lda, ilo, ihi, scale, info)
输出:a Overwritten by the balanced matrix
program main implicit none real(8) :: aaa(2,2),ttt(2,2),bbb(2,2) character(1) :: job integer :: n,lda,ilo,ihi,info,i real(8) :: scale(2) aaa=reshape( (/1.d0,3d-6,2d6,4.d0/), (/2,2/) ) job='B' n=2 lda=2 ttt=0. call dgebal( job, n, aaa, lda, ilo, ihi, scale, info ) forall(i=1:2) ttt(i,i)=scale(i) end forall bbb=aaa print *,bbb print *,ttt end program输出结果
5、Cholesky分解(Cholesky decomposition,A = UT*U,A = L*LT)
lapack函数(dpotrf, zpotrf)
函数原型:call dpotrf( uplo, n, a, lda, info )
输出:a The upper or lower triangular part of a is overwritten by the Cholesky factor U or L, as specified by uplo.
program main implicit none real(8) :: aaa(2,2),uuu(2,2) character :: uplo integer :: n,lda,info,i,j aaa=reshape((/5,3,3,8/),(/2,2/)) uplo='U' n=2 lda=2 uuu=0. call dpotrf( uplo, n, aaa, lda, info ) forall(i=1:n,j=1:n,i<=j) uuu(i,j)=aaa(i,j) end forall print *,uuu end program输出结果
6、行列式(Determinant)
lapack函数(dgetrf, zgetrf)
函数原型:call dgetrf( m, n, a, lda, ipiv, info )
输出:a Overwritten by L and U. The unit diagonal elements of L are not stored.
program main implicit none real(8) :: aaa(2,2),det integer :: m,n,info,i,ipiv,lda aaa=reshape((/1,3,2,4/),(/2,2/)) m=2 n=m lda=2 det=1.0d0 call dgetrf( m, n, aaa, lda, ipiv, info ) do i=1,m det=det*aaa(i,i) enddo print *,det end program输出结果
作者:PcX
出处:http://www.cnblogs.com/xunxun1982/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。