leetcode146 - LRU Cache - medium
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache
class:
LRUCache(int capacity)
Initialize the LRU cache with positive sizecapacity
.int get(int key)
Return the value of thekey
if the key exists, otherwise return-1
.void put(int key, int value)
Update the value of thekey
if thekey
exists. Otherwise, add thekey-value
pair to the cache. If the number of keys exceeds thecapacity
from this operation, evict the least recently used key.
Follow up:
Could you do get
and put
in O(1)
time complexity?
Example 1:
Input ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] Output [null, null, null, 1, null, -1, null, -1, 3, 4] Explanation LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // cache is {1=1} lRUCache.put(2, 2); // cache is {1=1, 2=2} lRUCache.get(1); // return 1 lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3} lRUCache.get(2); // returns -1 (not found) lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3} lRUCache.get(1); // return -1 (not found) lRUCache.get(3); // return 3 lRUCache.get(4); // return 4
Constraints:
1 <= capacity <= 3000
0 <= key <= 3000
0 <= value <= 104
- At most
3 * 104
calls will be made toget
andput
.
用DLL+Hashmap。
DLL track order, 新的在头旧的在尾,加到头删掉尾都是O(1).
Hashmap存key-val 查找O(1), 同时也存key在DLL里的位置,那given iterator删起来也是O(1).
Get/Put都要干的事:map里有key的话,删掉原位置。然后更新到队首。两个数据结构里都要更新都要更新!!
Put还要检查cache满没满,满了的话加条目之前先把队尾删了,map里对应的也删掉。
细节:
put的时候先看key存不存在,存在的话没必要删队尾的,还容易把它自己给删了,那你接下来找谁呢?所以这一步可以放到共同步骤里面
1. 作弊方法,用std的list,就是个DLL
class LRUCache { public: unordered_map<int, pair<int, list<int>::iterator>> cache; list<int> order; int cap; LRUCache(int capacity) { cap=capacity; } void use(int key){ if (cache.find(key) != cache.end()){ order.erase(cache[key].second); } else if (order.size() >= cap){ int oldest = order.back(); order.pop_back(); cache.erase(oldest); } order.push_front(key); cache[key].second = order.begin(); } int get(int key) { if(cache.find(key) != cache.end()){ use(key); return cache[key].first; } return -1; } void put(int key, int value) { use(key); cache[key].first = value; } };