3.Spark设计与运行原理,基本操作
1.Spark已打造出结构一体化、功能多样化的大数据生态系统,请用图文阐述Spark生态系统的组成及各组件的功能。
1. Spark Core
Spark Core是整个BDAS的核心组件,是一种大数据分布式处理框架,不仅实现了MapReduce的算子map函数和reduce函数及计算模型,还提供如filter、join、groupByKey等更丰富的算子。
Spark将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度、RPC、序列化和压缩,并为运行在其上的上层组件提供API。其底层采用Scala函数式语言书写而成,并且深度借鉴Scala函数式的编程思想,提供与Scala类似的编程接口。
2. Mesos
Mesos是Apache下的开源分布式资源管理框架,被称为分布式系统的内核,提供了类似YARN的功能,实现了高效的资源任务调度。
3. Spark Streaming
Spark Streaming是一种构建在Spark上的实时计算框架,它扩展了Spark处理大规模流式数据的能力。其吞吐量能够超越现有主流流处理框架Storm,并提供丰富的API用于流数据计算。
4. MLlib
MLlib是Spark对常用的机器学习算法的实现库,同时包括相关的测试和数据生成器。MLlib目前支持4种常见的机器学习问题:二元分类、回归、聚类以及协同过滤,还包括一个底层的梯度下降优化基础算法。
5. GraphX
GraphX是Spark中用于图和图并行计算的API,可以认为是GraphLab和Pregel在Spark (Scala)上的重写及优化,与其他分布式图计算框架相比,GraphX最大的贡献是,在Spark上提供一栈式数据解决方案,可以方便、高效地完成图计算的一整套流水作业。
6. Spark SQL
Shark是构建在Spark和Hive基础之上的数据仓库。它提供了能够查询Hive中所存储数据的一套SQL接口,兼容现有的Hive QL语法。熟悉Hive QL或者SQL的用户可以基于Shark进行快速的Ad-Hoc、Reporting等类型的SQL查询。由于其底层计算采用了Spark,性能比Mapreduce的Hive普遍快2倍以上,当数据全部存储在内存时,要快10倍以上。2014年7月1日,Spark社区推出了Spark SQL,重新实现了SQL解析等原来Hive完成的工作,Spark SQL在功能上全覆盖了原有的Shark,且具备更优秀的性能。
7. Alluxio
Alluxio(原名Tachyon)是一个分布式内存文件系统,可以理解为内存中的HDFS。为了提供更高的性能,将数据存储剥离Java Heap。用户可以基于Alluxio实现RDD或者文件的跨应用共享,并提供高容错机制,保证数据的
可靠性。
8. BlinkDB
BlinkDB是一个用于在海量数据上进行交互式SQL的近似查询引擎。它允许用户在查询准确性和查询响应时间之间做出权衡,执行相似查询。
2.请详细阐述Spark的几个主要概念及相互关系:
RDD,DAG,Application, job,stage,task,Master, worker, driver,executor,Claster Manager
Worker:集群中任何可以运行Application代码的节点,在Standalone模式中指的是通过slave文件配置的Worker节点,在Spark on Yarn模式下就是NoteManager节点。
RDD:是弹性分布式数据集(Resilient Distributed Dataset)的简称,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型。
DAG:是Directed Acyclic Graph(有向无环图)的简称,反映RDD之间的依赖关系。
Application:Application都是指用户编写的Spark应用程序,其中包括一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码。
Task:被送到某个Executor上的工作单元,但HadoopMR中的MapTask和ReduceTask概念一样,是运行Application的基本单位,多个Task组成一个Stage,而Task的调度和管理等是由TaskScheduler负责
Job:包含多个Task组成的并行计算,往往由Spark Action触发生成,一个Application中往往会产生多个Job
Stage:每个Job会被拆分成多组Task,作为一个TaskSet,其名称为Stage,Stage的划分和调度是有DAGScheduler来负责的,Stage有非最终的Stage(Shuffle Map Stage)和最终的Stage(Result Stage)两种,Stage的边界就是发生Shuffle的地方
Driver:Spark中的Driver即运行上述Application的main函数并创建SparkContext,创建SparkContext的目的是为了准备Spark应用程序的运行环境,在Spark中有SparkContext负责与ClusterManager通信,进行资源申请、任务的分配和监控等,当Executor部分运行完毕后,Driver同时负责将SparkContext关闭,通常用SparkContext代表Driver
Executor:某个Application运行在worker节点上的一个进程,该进程负责运行某些Task,并且负责将数据存到内存或磁盘上,每个Application都有各自独立的一批Executor,在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutor Backend。一个CoarseGrainedExecutor Backend有且仅有一个Executor对象,负责将Task包装成taskRunner,并从线程池中抽取一个空闲线程运行Task,这个每一个CoarseGrainedExecutor Backend能并行运行Task的数量取决于分配给它的cup个数
DAGScheduler:根据Job构建基于Stage的DAG(Directed Acyclic Graph有向无环图),并提交Stage给TASKScheduler。其划分Stage的根据是RDD之间的依赖的关系找出开销最小的调度方法。
TASKScheduler:将TaskSET提交给Worker运行,每个Executor运行什么Task就是在此处分配的,TaskScheduler维护所有TaskSet,当Executor向Driver发生心跳时,TaskScheduler会根据资源剩余情况分配相应的Task。
3.在PySparkShell尝试以下代码,观察执行结果,理解sc,RDD,DAG。请画出相应的RDD转换关系图。
>>> sc
>>> lines = sc.textFile("file:///home/hadoop/wc/f1.txt")
>>> lines
>>> words=lines.flatMap(lambda line:line.split())
>>> words
>>> wordKV=words.map(lambda word:(word,1))
>>> wordKV
>>> wc=wordKV.reduceByKey(lambda a,b:a+b)
>>> wc
>>> cs=lines.flatMap(lambda line:list(line))
>>> cs
>>> cKV=cs.map(lambda c:(c,1))
>>> cKV
>>> cc=cKV.reduceByKey(lambda a,b:a+b)
>>> cc
>>> lines.foreach(print)
>>> words.foreach(print)
>>> wordKV.foreach(print)
>>> cs.foreach(print)
>>> cKV.foreach(print)
>>> wc.foreach(print)
>>> cc.foreach(print)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构