热力学与统计物理习题
e9.1 孤立系统,粒子能量$\varepsilon=p^2/2m=(p_x^2+p_y^2+p_z^2)/2m$,求系统的配分函数
孤立系统的配分函数有以下两种表达式--能态和能级
\[z=\sum_i e^{-\beta \varepsilon}\]
\[z=\sum_i G_ie^{-\beta \varepsilon_i}\]
或写成积分形式
\[z=\int e^{-\beta \varepsilon}D(\varepsilon)d\varepsilon\]
\[z=\int e^{-\beta \varepsilon_i}\frac{dp_1..dp_r}{h^r}\]
解法1:
利用配分函数的能级表达式,
\[z=\int e^{-\beta \frac{p_x^2+p_y^2+p_z^2}{2m}}\frac{dxdydzdp_xdp_ydp_z}{h^3}\]
\[z=\frac{V}{h^3} (\int_{-\infty}^{\infty} e^{-\beta \frac{p_x^2}{2m}})^3\]
根据高斯积分
\[\int_{-\infty}^{\infty} e^{-\alpha x^2}=\sqrt{\frac{\pi}{\alpha}}\]
所以
\[z=\frac{V}{h^3}(2\pi mk_BT)^{3/2}\]
解法2:
利用配分函数的能态表达式,
\[z=\int e^{-\beta \frac{p^2}{2m}}D(\varepsilon)d\varepsilon\]
因此要先求出态密度
\[\sum (\varepsilon)=\int_{h\le\varepsilon}dxdydzdp_xdp_ydp_z\]
\[\sum (\varepsilon)=V\int_{h\le\varepsilon}dp_xdp_ydp_z \]
可采用换元积分,
\[\sum (\varepsilon)=V(2m\varepsilon)^{3/2}\int_{(\frac{p_x^2}{\sqrt{2m\varepsilon}})^2+(\frac{p_y^2}{\sqrt{2m\varepsilon}})^2+(\frac{p_z^2}{\sqrt{2m\varepsilon}})^2\le 1}d(\frac{p_x}{\sqrt{2m\varepsilon}})(\frac{p_y}{\sqrt{2m\varepsilon}})(\frac{p_z}{\sqrt{2m\varepsilon}})=\frac{4\pi V}{3}(2m\varepsilon)^{3/2} \]
更简单地可以利用球坐标积分,
\[\sum (\varepsilon)=V\int_{0}^{\sqrt(2m\varepsilon)} p^2dp \int_0^{\pi} sin\theta d\theta \int_0^{2\pi}d\varphi\]
同样得到
\[\sum (\varepsilon)=\frac{4\pi V}{3}(2m\varepsilon)^{3/2}\]
态密度,
\[D(\varepsilon)=\frac{1}{3}\frac{\sum (\varepsilon)}{\partial \varepsilon}\]
\[D(\varepsilon)=\frac{2\pi V}{h^3}(2m)^{3/2}\varepsilon^{1/2}\]
代入配分函数表达式
\[z=\int e^{-\beta \frac{p^2}{2m}}D(\varepsilon)d\varepsilon\]
得到$z=\frac{V}{h^3}(2\pi mk_BT)^{3/2}$
9.1( 参照e9.1,坐标积分结果变为2V)
9.2
\[\varepsilon_l=c_lp1,\varepsilon_t=c_tp2\]
\[\sum (\varepsilon)=V\int_0^{\varepsilon/c_l} p1^2dp \int_0^{\pi} sin\theta d\theta \int_0^{2\pi}d\varphi+2V\int_0^{\varepsilon/c_t} p2^2dp \int_0^{\pi} sin\theta d\theta \int_0^{2\pi}d\varphi\]
\[\sum (\varepsilon)=\frac{4\pi V \varepsilon^3}{3c_l^3}+\frac{8\pi V \varepsilon^3}{3c_t^3}\]
态密度,
\[D(\varepsilon)=\frac{1}{3}\frac{\sum (\varepsilon)}{\partial \varepsilon}=\frac{4\pi V \varepsilon^2}{c_l^3h^3}+\frac{8\pi V \varepsilon^2}{c_t^3h^3}\]
9.3
(a) $D(\varepsilon)=\frac{4\pi mV}{h^3}(2m\varepsilon)^{1/2}$
(b) $D(\varepsilon)=\frac{4\pi V\varepsilon}{c^2}(\frac{\varepsilon^2-m^2c^4}{c^2})^{1/2}$
(c)$\varepsilon=\frac{1}{2m}(p_x^2+p_y^2+p_z^2)+\frac{k}{2}(x^2+y^2+z^2)$
对变量进行替换,
\[\xi_i=\frac{p_i}{\sqrt{2m\varepsilon}}\]
\[\eta_i=\frac{r_i}{\sqrt{2\varepsilon /k}}\]
利用公式:
\[V_n=\frac{\pi^{n/2}}{\Gamma (n/2+1)}\]
\[\Gamma (m)=\int_0^{\infty} t^{m-1}e^{-t}dt\]
积分得到,
\[\sum(\varepsilon)=(2m\varepsilon)^3(\sqrt{2\varepsilon /k})^3\int_{\sum_{i=1}^3 \xi_i^2+\eta_i^2 \leq 1} \Pi_{i=1}^{3} d\xi_i d\eta_i=\frac{(2\pi \varepsilon \sqrt{m/k})^3}{3!}\]
9.4
谐振子能量,
\[\varepsilon_n=(n+1/2)h\nu\]
处于第一激发态和基态的概率比值,
\[\rho_1/\rho_0=\frac{e^{-\beta\frac{3}{2}h\nu}}{e^{-\beta\frac{1}{2}h\nu}}=e^{-\beta \nu}\]
配分函数(按照微正则系综能态的写法),
\[z=e^{-\beta\frac{3}{2}h\nu}+e^{-\beta\frac{1}{2}h\nu}\]
能量的期望值,
\[<{\varepsilon}>=-\frac{1}{z}\frac{\partial z}{\partial \beta}=\frac{1}{2}h\nu+\frac{h\nu}{e^{\beta h \nu}+1}\]
9.5
化简得到
\[ln\frac{N_z}{N_0}=-\frac{h\nu}{k_BT}n\]
拟合$ln({N_z}/{N_0})--n$得到斜率值,进而算出T=2503K
9.6
方法同9.5,此时$N_0$为$n=0$时的$N_z$,拟合得到$k_B$
9.7
\[\varepsilon=\frac{p^2}{2m}+\frac{1}{2}kx^2\]
\[z=\int_{-\infty}^{\infty} e^{-\beta (\frac{p^2}{2m}+\frac{1}{2}kx^2)} \frac{dxdp}{h}\]
\[z=\frac{1}{h}\int_{-\infty}^{\infty} e^{-\beta \frac{p^2}{2m}}dp \int_{-\infty}^{\infty}e^{-\beta \frac{1}{2}kx^2}dx=\frac{2\pi}{\beta h}\sqrt{\frac{m}{k}} \]
方均位移
\[<x^2>=\frac{1}{z}\int x^2 e^{-\beta (\frac{p^2}{2m}+\frac{1}{2}kx^2)} dxdp=\frac{1}{\beta k}\]
因此
\[<{\sum_i x^2}>=\sum_{i=1}^3 <{x^2}>=\frac{3}{\beta k}=\frac{3k_B}{k}T\]
9.8
某一个面上(面积为S)的配分函数,用直角坐标(也可以选用极坐标)
\[z=\int e^{-\beta \frac{p_x^2+p_y^2}{2m}}\frac{dxdydp_xdp_y}{h^2}\]
\[z=\frac{S}{h^2} (\int_{-\infty}^{\infty} e^{-\beta \frac{p_x^2}{2m}})^2=\frac{S}{h^2}(2\pi mk_BT)\]
单粒子能量期望,
\[<{\varepsilon_1}>=-\frac{1}{z}\frac{\partial z}{\partial \beta}=1/\beta\]
N个粒子,
\[<{\varepsilon}>=N<{\varepsilon_1}>=Nk_BT\]
摩尔热容,
\[C=\frac{\partial <{\varepsilon}>}{\partial t}=Nk_B\]