RSA算法描述:

1) 选择两个大素数 p、q, 计算 n = p*q;

2) 产生 e, d 使:

    e*d = 1mod(p-1)(q-1)

    e 与 (p-1)(q-1) 互质

[公钥] e、n

[私钥] d、n

3) 加密:

    c = m^d mod n

4) 解密:

    m = c^e mod n

--------------------------------------------------------------------------------------

libtommath是一个大数算法库。以下的代码是用这个库中的函数实现的,相当简单。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#include <tommath.h>
typedef struct {
    int bits;           /* bits in key */
    mp_int n;           /* modulus */
    mp_int e;           /* public exponent */
    mp_int d;           /* private exponent */
}rsa_key;
int rsa_rng(unsigned char *dst, int len, void *dat)
{
    int x;
    for (x = 0; x < len; x++)   dst[x] = rand() & 0xFF;
    return len;
}
int rsa_preme_random( mp_int *a, int bits )
{
    int err = mp_prime_random_ex( a, 8, bits, LTM_PRIME_2MSB_ON|LTM_PRIME_SAFE, rsa_rng, NULL );
    if (err != MP_OKAY) {
        return -1;
    }
    return 0;
}
int rsa_gen_key( rsa_key *key, int bits )
{
    mp_int p, q;
    mp_int sp, sq;
    mp_int n, m;
    mp_int e, d;
    mp_int t;
    //init mp_ints
    mp_init( &p );  mp_init( &q );  mp_init( &sp ); mp_init( &sq );
    mp_init( &n );  mp_init( &m );  mp_init( &e );  mp_init( &d );  mp_init( &t );
    //genarate p & q
    rsa_preme_random( &p, bits/2 );
    rsa_preme_random( &q, bits/2 );
    //make n & m
    mp_sub_d( &p, 1, &sp );
    mp_sub_d( &q, 1, &sq );
    mp_mul( &p, &q, &n );
    mp_mul( &sp, &sq, &m );
     
    //make e & d
    mp_set( &e, 127 );
    retry_e:
    mp_gcd( &e, &m, &t );
    if( ( mp_cmp_d(&t, 1) ) > 0 ){
        mp_add_d( &e, 2, &e );
        goto retry_e;
    }
    mp_invmod( &e, &m, &d );
    //copy n d e to key struct
    mp_init( &key->n );
    mp_init( &key->d );
    mp_init( &key->e );
    key->bits = bits;
    mp_copy( &n, &key->n );
    mp_copy( &d, &key->d );
    mp_copy( &e, &key->e );
     
    mp_clear( &p ); mp_clear( &q ); mp_clear( &sp );mp_clear( &sq );
    mp_clear( &n ); mp_clear( &m ); mp_clear( &e ); mp_clear( &d ); mp_clear( &t );
    return 0;
}
/*set rsa key by string */
int rsa_set_key( rsa_key *key, char *sn, char *se, char *sd, int bits, int radix )
{
    key->bits = bits;
    mp_init( &key->n );
    mp_init( &key->d );
    mp_init( &key->e );
    if( sn )    mp_read_radix( &key->n, sn, radix );
    if( se )    mp_read_radix( &key->e, se, radix );
    if( sd )    mp_read_radix( &key->d, sd, radix );
     
    return 0;
}
/*encrypt by private key */
int rsa_encrypt(mp_int *c, mp_int *m, rsa_key *key)
{
    mp_exptmod( c, &key->d, &key->n, m );
    return 0;
}
/*decrypt by public key */
int rsa_decrypt(mp_int *m, mp_int *c, rsa_key *key)
{
    mp_exptmod( m, &key->e, &key->n, c );
    return 0;
}
int rsa_test()
{
    mp_int  c, m;
    rsa_key key;
    char sn[] = "BB7F51983FD8707FD6227C23DEF5D5377A5A737CEF3C5252E578EFE136DF87B50473F9341F1640C8D258034E14C16993FCE6C6B8C3CEEB65FC8FBCD8EB77B3B05AC7C4D09E0FA1BA2EFE87D3184DB6718AE41A7CAD89B8DCE0FE80CEB523D5D647F9DB58A31D2E71AC677E67FA6E75820736C9893761EE4ACD11F31DBDC349EF";
    char se[] = "010001";
    char sm[] = "AA7B0BF4AAE8B7C2ECC485ACFA57770E50BB9207233E4278654717E470691981C187F81FFC3B90895063EF98C0D86B5297B655399309E6699FEE2270B0F3431B5ABAD7E516261926C35BF6BBFEFB49366EBE96DC510E9CBD915337E8188D517D15DCF90298C40233EEEAFD5A9459F5D3410E6B89B44DF6E818FA3594EF935534";
    char sc[1024];
    mp_init( &c );
    mp_init( &m );
    rsa_set_key( &key, sn, se, NULL, 128, 16 );
    mp_read_radix( &m, sm, 16 );
    rsa_decrypt( &m, &c, &key );
    mp_toradix( &c, sc, 16 );
    printf("%s\n", sc);
    return 0;
}
posted on 2018-03-10 18:33  xmj  阅读(1307)  评论(0编辑  收藏  举报