写在最前面的

就像上一篇文章说的,“编程永远是后话”!在有了可靠的问题分析过程和数据结构的选择,能正确运行的“二分搜索”代码出现之前,把其主要的思路先在草稿上实现,即伪代码。但由于伪代码执行结果的不确定性,需要有一个验证的过程。笔者非常不喜欢这个过程,因为这个过程很繁琐,而且推出的结论不一定是正确的(毕竟没有实实在在在机器上运行得到正确的结果),在笔者看来,给一个算法题,知道用什么算法,数据结构,如果能用伪代码实现,离成功已经不远了。 
但后来我又反驳了自己的观点(矛盾体啊),理由:至少到目前为止,写的都是小程序、小算法题,验证过程可能已经被潜移默化解决了。

实战演练:动态规划矩阵连乘最优组合

麻烦来了,今天晚上在实现“动态规划矩阵连乘最优组合”的算法在这个问题中需要填表,通过动态规划解体,就因为表的下标混乱,所以填表的过程比较枯燥(debug了好多次)。 我先在稿纸上用伪代码大概解决了这个问题,但是在真正敲写代码的时候,却发现“伪代码”除了整体上的走向之外(大概的结构),很多细节都有问题。

“大概”伪代码:

复制代码
for i=[0,n-1) 
    for j=[0,n-1-i) 
        col =...    //col是填表元素的列 
        min =... 
        for k=[0,i) 
            t =.... 
            if t<min 
                t = min 
        a[j][col] = min;
复制代码

其中省略号内的东西待敲进去之后都不正确!需要重新分析这个填表的过程。

捣乱的分析过程

顺序填表分成n-1组,编号i=[0,n-2],如图: 
image 

 

而每组有j=n-1-i个元素需要填写。于是伪代码的前两行是这样的来的

for i=[0,n-1) 
    for j=[0,n-1-i)

首先把当下需要填写元素的列值得出是col = i+j+1;通过观察很容易发现的;而j即为当下需要填写元素的行,于是(j,col)就是需要填写元素的位置。 

而min的计算是瓶颈,画图

image

可以发现计算min的两个辅助元素的(第一个元素)行和(第二个元素)列都不被当下需填写元素的(j,col)决定了。于是:

min = a[j][j] + a[j+1][col] + tab[j]*tab[j+1]*tab[col]; 
接下来的t的计算由上面的min的计算的出来的:      
t = a[j][j+k+1] + a[j+k+2][col] + tab[j] * tab[j+k+2] * tab[col+1]; 
其实是一样的,只不过红色部分多加了个k+1。

分析过程不够严谨细腻,但是纵观下来,自己有一个清晰的思路。

View Code 

要做到上面的条条框框实在是不容易的,但是如果养成“条条框框”的习惯的话,即使没有稿纸,只操手MSPAINT,相信敲代码的效率会提高的。

断言的魅力 

“脚手架”简单来说是“验证程序”的程序,但笔者认为“断言”的魅力更大些。在每一个程序中,有一些变量数据是至关重要的,经常Debug就是为了这些变量的检测,看是否和预期中的结果一样;如果不一样我的做法就是:结束debug,开始艰苦的错误排查,这个过程非常头疼。assert能够可以扫清很多的错误细节,包括除数为0,数据超出规定的范围,数组下标越界云云。所以添加断言,能在逻辑上保证你的程序不会出错,即使现实并非如此。

故在上面“动态规划矩阵连乘最优组合”中,添加了 

assert(n!=0); 
assert(col+1<n+1); 
assert(j+k+2<n); 

来保证数组下标越界问题,很明显,如果下标越界,将是毁灭性的bug。

 

另外,添加了一个show函数: 

复制代码
void show(int ** a,int n) 

    for(int i=0; i<n; i++) 
    { 
        for(int j=0; j<n; j++) 
        cout << setw(6) <<a[i][j]; 
        cout << endl; 
    }// for 
    cout << endl; 
}
复制代码

这是验证程序的一部分,另外关于程序运行时间外链一篇文章,里面的方法不错,不仅可以精确到ms,还可以是us,http://www.cnblogs.com/ma6174/archive/2012/01/03/2310996.html

一个算法题

非常遗憾,第67章看懂没多少,大概是要读者明白如何预见程序的开销!!相反,第八章有趣多了。第八章提出了找出一个数字序列中最大的、连续的子序列,并且规定全负子序列的和为0。

如果没有阅读过《编程珠玑》跳到第四点。”

  1. 最原始穷举的算法时间开销大到O(n^3); 
  2. 另一种穷举的算法,即平方算法。通过保存中间结果或者预处理数据,省去了之后重复的计算,是备忘录算法(简单的动态规划),开销下降了一个数量级O(n^2); 
  3. 分治法,这个真没想到,开销再次下降O(nlogn); 
  4. 以前做过类似的题目,所以最先想到的就是这个方法。形象点就是,“边吃边拉”——扫描算法,运行时间为O(n)。 
复制代码
for i=[0,n) 
    t += a[i] 
    if t<max case 
        max = t 
    if t<0 case 
        t = 0 
end.
复制代码

 

ACM初赛的题目用的就是这个“边吃边拉”,不过和这里的有点不同,实际上是贪心算法:http://acm.hdu.edu.cn/diy/contest_showproblem.php?pid=1005&cid=14855&hide=0

 

课后习题第10题,“找到总和最接近0的子序列或者最接近某个数的子序列”,尝试着用上面的“边吃边拉”算法解决,但是没有成功;只能按着上面说的平方算法,伪代码如下: 

复制代码
nearest = INF 
for i=[0,n) 
    for j=[i,n) 
        t = tab[j] - tab[i] 
        if nearest>|t| case 
            nearest = t 
end
复制代码

数组用负数索引

第八章最有趣的地方就是“数组索引下标居然可以出现复数”!写了将近两年的程序居然还不知道有这个东西,略有自惭形秽的味道。 
设原数组a[n],pa = &a[1],那么pa[-1]亦即a[0]。但是,这么巧妙的东西,该怎么用? 大家一开始都有写过“冒泡排序”,看看利用这个“巧妙”能有什么效果?给出伪代码: 

复制代码
bubble(a,n) 
    mustbe(n>1) 
    pa = &a[1] 
    for i=[0,n) 
        for j=[0,n-i) 
            if a[j]>pa[j] case 
                swap(a[j],pa[j]) 
end
复制代码

 

是的,它既没有改善冒泡的运行开销和效率,但是代码美观了很多:通过把pa定位在a的第二个元素上,所以a[j]和pa[j]其实不是同一个元素,pa[j]在a[j]的后面,即便他们的下标相同。笔者突然想到了一个比较现实而有用例子,大家一开始学习编程的时候,几乎都遇到过这样的题目,给定一个数字数组,求数组的各元素的总和,最原始的想法:

sum(a,n) 
    for i=[0,n) 
        sum += a[i]; 
end

 

看看结合上面的“巧妙”的伪代码: 

复制代码
sum(a,n) 
    pa = &a[n-1] 
    t = n>1; 
    for i=[0,t) 
        sum += (a[i]+pa[i|0x8000])    //下标变为负数 
    if n&1 case 
        sum += a[t] 
end
复制代码

没错,他还是做了n次的加法,一次都没减,但是也有小小的优化:for循环里对i的判断判断和自增都减半!加减开销比位运算大的。“啊哈,灵机一动!”。非常文艺青年的一个优化,非常诗意...

结尾

第八章开始,“shit、fuck,cao”等感叹多了起来(看看《关于读书的流水账》就知道为什么有这些感叹了),而这都是笔者所要的读书的感觉。下一篇笔记会多写点“代码优化”的东西,因为在读过的《深入理解计算机系统》里也有很多相关的话题!

 

本文完 Friday, April 06, 2012

捣乱小子 http://daoluanxiaozi.cnblogs.com/ 
 

posted on 2018-03-09 12:09  xmj  阅读(382)  评论(0编辑  收藏  举报