CAS描述
一、基本情况
了解CAS,首先要清楚JUC,那么什么是JUC呢?JUC就是java.util.concurrent包的简称。它有核心就是CAS与AQS。CAS是java.util.concurrent.atomic包的基础,如AtomicInteger、AtomicBoolean、AtomicLong等等类都是基于CAS。
什么是CAS呢?全称Compare And Swap,比较并交换。CAS有三个操作数,内存值V,旧的预期值E,要修改的新值N。当且仅当预期值E和内存值V相同时,将内存值V修改为N,否则什么都不做。
独占锁是一种悲观锁,synchronized就是一种独占锁,会导致其它所有需要锁的线程挂起,等待持有锁的线程释放锁。而另一个更加有效的锁就是乐观锁。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。乐观锁用到的机制就是CAS,Compare and Swap。
二、常见问题
CAS虽然很高效的解决原子操作,但是CAS仍然存在三大问题。ABA问题,循环时间长开销大和只能保证一个共享变量的原子操作
1. ABA问题。因为CAS需要在操作值的时候检查下值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时会发现它的值没有发生变化,但是实际上却变化了。ABA问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加一,那么A-B-A 就会变成1A-2B-3A。
从Java1.5开始JDK的atomic包里提供了一个类AtomicStampedReference来解决ABA问题。这个类的compareAndSet方法作用是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。
关于ABA问题参考文档: http://blog.hesey.net/2011/09/resolve-aba-by-atomicstampedreference.html
2. 循环时间长开销大。自旋CAS如果长时间不成功,会给CPU带来非常大的执行开销。如果JVM能支持处理器提供的pause指令那么效率会有一定的提升,pause指令有两个作用,第一它可以延迟流水线执行指令(de-pipeline),使CPU不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。第二它可以避免在退出循环的时候因内存顺序冲突(memory order violation)而引起CPU流水线被清空(CPU pipeline flush),从而提高CPU的执行效率。
3. 只能保证一个共享变量的原子操作。当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁,或者有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如有两个共享变量i=2,j=a,合并一下ij=2a,然后用CAS来操作ij。从Java1.5开始JDK提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行CAS操作。
三、代码
public class CASDome implements Runnable{ private volatile int count = 0; public void run() { for (int i = 0; i < 100; i++) { addCount(); } } private void addCount() { count++; } public int getCount() { return count; } public static void main(String[] args) { ExecutorService threadPool = Executors.newFixedThreadPool(10); CASDome threadDemo = new CASDome(); for (int i = 0; i < 10; i++) { threadPool.submit(threadDemo); } threadPool.shutdown(); System.out.println(threadDemo.getCount()); } }
使用volatile来实现时,还是会出去总数不是1000的情况。
换成CAS原理的AtomicInteger:
public class CASDome implements Runnable{ private AtomicInteger count = new AtomicInteger(0); public void run() { for (int i = 0; i < 100; i++) { // 递增 count.getAndIncrement(); } } public int getCount() { return count.get(); } public static void main(String[] args) { ExecutorService threadPool = Executors.newFixedThreadPool(10); CASDome threadDemo = new CASDome(); for (int i = 0; i < 10; i++) { threadPool.submit(threadDemo); } threadPool.shutdown(); System.out.println(threadDemo.getCount()); } }
就可以得到1000的准确值。来看看底层实现
// setup to use Unsafe.compareAndSwapInt for updates private static final Unsafe unsafe = Unsafe.getUnsafe(); private static final long valueOffset; static { try { valueOffset = unsafe.objectFieldOffset (AtomicInteger.class.getDeclaredField("value")); } catch (Exception ex) { throw new Error(ex); } } private volatile int value; /** * Creates a new AtomicInteger with the given initial value. * * @param initialValue the initial value */ public AtomicInteger(int initialValue) { value = initialValue; }
Unsafe类是不安全的类,它提供了一些底层的方法。AtomicInteger的值保存在value中,而valueOffset是value在内存中的偏移量,利用静态代码块使其类一加载的时候就赋值。value值使用volatile,保证其可见性。
/** * Atomically increments by one the current value. * * @return the previous value */ public final int getAndIncrement() { return unsafe.getAndAddInt(this, valueOffset, 1); }
public final int getAndAddInt(Object var1, long var2, int var4) { int var5; do { var5 = this.getIntVolatile(var1, var2); } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4)); return var5; }
var1表示当前对象,var2表示value在内存中的偏移量,var4为增加的值。var5为调用底层方法获取value的值
compareAndSwapInt方法通过var1和var2获取当前内存中的value值,并与var5进行比对,如果一致,就将var5+var4的值赋给value,并返回true,否则返回false
由do while语句可知,如果这次没有设置进去值,就重复执行此过程。这一过程称为自旋。
compareAndSwapInt是JNI(Java Native Interface)提供的方法,可以是其他语言写的。