霍夫曼树的三个程序
---------------------------------------------------------------------------------------
#include <iostream> #include <cstring> using namespace std; #define MAX 32767 typedef struct { int weight; char value; int parent; int lchild; int rchild; }HTNode, *HuffmanTree; //动态分配数组存储霍夫曼树 typedef struct { char * HfmCode; //动态分配数组,存储哈夫曼编码 char value; }code, *HuffmanCode; //选择最小权重的两个树 void select(HuffmanTree &ht,int n,int *s1,int *s2) { /*ht,为树所在数组的头指针,n为允许查找的最大序号,s1,s2,返回最小的两个序号*/ int p1=MAX; int p2=MAX; /*p1, p2用来记录最小的两个权, 要求p1<p2*/ int pn1=0; int pn2=0; /*pn1, pn2 用来记录这两个权的序号*/ int i; for(i=1;i<=n;i++) { if(ht[i].weight<p1 && ht[i].parent==0) //ht[i].parent=0的作用是去掉已经选过的节点 { pn2=pn1; p2=p1; pn1=i; p1=ht[i].weight; } else if(ht[i].weight<p2 && ht[i].parent==0) { pn2=i; p2=ht[i].weight; } } *s1=pn1; //赋值返回 *s2=pn2; } //创建霍夫曼树 void Creat_HuffmanTree(HuffmanTree &ht,int *w,char *st,int n) { int m=2*n-1; ht=(HuffmanTree)malloc( (m+1)*sizeof(HTNode) ); //0号单元不用 HuffmanTree p; int i; w=w+1; //因为w[]的0号单元没有用 st=st+1; for(p=ht+1,i=1; i<=n; i++,p++,w++,st++ ) //1-n号放叶子结点,初始化 { (*p).weight=*w; (*p).value=*st; (*p).parent=0; (*p).lchild=0; (*p).rchild=0; } for(; i<=m; i++,p++) //非叶子结点初始化 { (*p).weight=0; (*p).parent=0; (*p).lchild=0; (*p).rchild=0; } int s1,s2; //在select函数中使用,用来存储最小权的结点的序号 for(i=n+1;i<=m;++i) //创建非叶子结点,建哈夫曼树 { //在ht[1]~ht[i-1]的范围内选择两个parent为0且weight最小的结点,其序号分别赋值给s1、s2返回 select(ht,i-1,&s1,&s2); ht[s1].parent=i; ht[s2].parent=i; ht[i].lchild=s1; ht[i].rchild=s2; ht[i].weight=ht[s1].weight + ht[s2].weight; } }//哈夫曼树建立完毕 //输出所有节点权重 void outputHuffman(HuffmanTree &ht, int m) { for(int i=1;i<=m;i++) cout<<ht[i].weight<<" "; } //从叶子结点到根,逆向求每个叶子结点对应的哈夫曼编码 void Creat_HuffmanCode(HuffmanTree &ht,HuffmanCode &hc,int n) { char *cd; int start; int c; //c指向当前节点 int p; //p指向当前节点的双亲结点 int i; hc=(HuffmanCode)malloc( (n+1)*sizeof(code) ); //分配n个编码的头指针 cd=(char * )malloc(n * sizeof(char )); //分配求当前编码的工作空间 cd[n-1]='\0'; //从右向左逐位存放编码,首先存放编码结束符 for(i=1;i<=n;i++) //求n个叶子结点对应的哈夫曼编码 { hc[i].value=ht[i].value; start=n-1; //初始化编码起始指针 for(c=i,p=ht[i].parent; p!=0; c=p,p=ht[p].parent) //从叶子到根结点求编码 { if(ht[p].lchild == c) cd[--start]='0'; else cd[--start]='1'; } hc[i].HfmCode = (char *)malloc(n*sizeof(char)); //为第i个编码分配空间 strcpy(hc[i].HfmCode,&cd[start]); } free(cd); } //解码 void Decoding_HuffmanTree(HuffmanTree &ht,char code[],char result[]) { int i , k=0 ; int p=0, root; for (root=1 ; ht[root].parent!=0 ; root=ht[root].parent) ; //root是霍夫曼树的根 for (i=0 , p=root ; code[i]!='\0'; i++) { if (code[i] == '0') p = ht[p].lchild; else p = ht[p].rchild; if (ht[p].lchild==NULL && ht[p].rchild==NULL) { result[k++] = ht[p].value; p = root; } } result[k] = '\0'; } int main() { HuffmanTree HT; HuffmanCode HC; int *w; //动态数组,存放各字符的权重 char *st; //字符串,存放节点的值 int i,n; //n is the number of elements int m; cout<<"input the total number of the Huffman Tree:"<<endl; cin>>n; w=(int *)malloc( (n+1)*sizeof(int) ); //0号单元不用 st=(char *)malloc( (n+1)*sizeof(char) ); //0号单元不用 FILE *fin=fopen("哈弗曼编码.txt","r"); for(i=1;i<=n;i++) { fscanf(fin,"%c%d",&st[i],&w[i]); } Creat_HuffmanTree(HT,w,st,n); /*构造H树*/ m=2*n-1; outputHuffman(HT,m); /*显示H树*/ cout<<endl; Creat_HuffmanCode(HT,HC,n); /*根据H树,求每个字符的编码,放在HC中*/ for(i=1;i<=n;i++) /*输出编码*/ cout<<HC[i].value<<" "<<HC[i].HfmCode<<endl; //解码 char *code="01101110101010001110110110011100"; char *result; result=(char *)malloc(100*sizeof(char)); Decoding_HuffmanTree(HT,code,result); //result[]存放解码结果 for(i=0;result[i];i++) cout<<result[i]<<" "; return 0; }
----------------------------------------------------------------------------------------------------