Python之元类
type生元类,元类生类,类生对象
换句话就是
道系元类解读,生就完了
话不多说上代码来理解:
def fn1(self,name='world'): print('Hello,%s'%name) def fn2(self,name='world'): print('Hi,%s'%name) Hello = type('Hello',(object,),dict(say_hi=fn1,hi='hello')) Hi = type('Hello',(object,),dict(say_hi=fn2,hi='hi')) # 生成Hello类的对象 hello1 = Hello() hello1.say_hi() print(hello1.hi) print(hello1) print('-'*50) # 华丽分割线
# 生成Hi类的对象 hello2 = Hi() print(hello2.hi) hello2.say_hi() print(hello2)
结果:
Hello,world hello <__main__.Hello object at 0x0000022EBA06EBA8> -------------------------------------------------- hi Hi,world <__main__.Hello object at 0x0000022EBA06EC50>
type()可以产生类,那么结果就证明了,他可以定制类的名称属性方法等。可以用于创造万物。
django中的ORM,大致思路如下:
class Field(object): def __init__(self, column_type, primary_key, default): self.column_type = column_type self.primary_key = primary_key self.default = default class StringField(Field): def __init__(self, column_type='varchar(32)', primary_key=False, default=None): super().__init__(column_type, primary_key, default) class IntegerField(Field): def __init__(self,column_type='int', primary_key=False, default=0): super().__init__(column_type, primary_key, default) class MyMetaClass(type): def __new__(cls, class_name,class_bases,class_attrs): if class_name == 'Models': return type.__new__(cls,class_name,class_bases,class_attrs) table_name = class_attrs.get('table_name',class_name) primary_key = None mappings = {} for k,v in class_attrs.items(): if isinstance(v,Field): mappings[k]=v if v.primary_key: if primary_key: raise TypeError('一张表只能有一个主键') primary_key = k print(class_attrs) for k in mappings.keys(): class_attrs.pop(k) if not primary_key: raise TypeError('一张表必须有主键') class_attrs['table_name'] = table_name class_attrs['primary_key'] = primary_key class_attrs['mappings'] = mappings print(class_attrs) return type.__new__(cls, class_name,class_bases,class_attrs) class Models(dict,metaclass=MyMetaClass): def __init__(self,**kwargs): super().__init__(**kwargs) def __getattr__(self, item): return self.get(item,'没有该键') def __setattr__(self, key, value): self[key] = value @classmethod def select(cls,**kwargs): pass if __name__ == '__main__': class Teacher(Models): table_name = 'author' id = IntegerField(primary_key=True) name = StringField() a = Teacher(id=12,name='xxx') print(a) print(a.name)
结果:
{'__module__': '__main__', '__qualname__': 'Teacher', 'table_name': 'author', 'id': <__main__.IntegerField object at 0x0000021E7680ECF8>, 'name': <__main__.StringField object at 0x0000021E76814438>} {'__module__': '__main__', '__qualname__': 'Teacher', 'table_name': 'author', 'primary_key': 'id', 'mappings': {'id': <__main__.IntegerField object at 0x0000021E7680ECF8>, 'name': <__main__.StringField object at 0x0000021E76814438>}} {'id': 12, 'name': 'xxx'} xxx
可以理解为:元类metaclass,是继承了type来控制其他类的产生的工具
然后用MyMetaClass来控制继承Model类的Teacher类,在生成类的实例的过程中,将类的同名属性id、name打包进mappings属性中,使得可以通过getattr来获取他自身字典中的值。可能还是不太明白那就继续看:
class Models(dict): def __init__(self,**kwargs): super().__init__(**kwargs) def __getattr__(self, item): return self.get(item,'没有该键') def __setattr__(self, key, value): self[key] = value @classmethod def select(cls,**kwargs): pass if __name__ == '__main__': class Teacher(Models): table_name = 'author' id = IntegerField(primary_key=True) name = StringField() a = Teacher(id=12,name='xxx') print(a) print(a.name)
结果:
{'id': 12, 'name': 'xxx'} <__main__.StringField object at 0x000001BD9825EDD8>
此时没有元类MyMetaClass的控制,a.name,获取到的是Teacher类的属性,是一个StringField的对象,而不是他本身字典的键对应值,问题就是这里,元类的引入就是为了解决这种问题,因为a.name会首先找本类的属性,再找父类的属性,如果在这过程中找到了,就不会继续查询,也根本不会调用重写的__getattr__方法。所以在类的创建时,通过把原先的属性隐藏起来,可以让对象去触发getattr得到自身包含的值。
# 类是type的对象,可以通过type(参数)来创建类 # type(name, bases, namespace) s = ''' my_a = 10 my_b = 20 def __init__(self): pass @classmethod def print_msg(cls, msg): print(msg) ''' namespace = {} exec(s, {}, namespace) Student = type('Student', (object, ), namespace) stu = Student()
# 元类:所有自定义的类本身也是对象,是元类的对象,所有自定义的类本质上是由元类实例化出来了 Student = type('Student', (object, ), namespace) class MyMeta(type): # 在class Student时调用:Student类的创建 => 来控制类的创建 # 自定义元类,重写init方法的目的: # 1.该方法是从type中继承来的,所以参数同type的init # 2.最终的工作(如果开辟空间,如果操作内存)还是要借助type # 3.在交给type最终完成工作之前,可以对类的创建加以限制 ***** def __init__(cls, class_name, bases, namespace): # 目的:对class_name | bases | namespace加以限制 ********************** super().__init__(class_name, bases, namespace) # 在Student()时调用:Student类的对象的创建 => 来控制对象的创建 # 自定义元类,重写call方法的目的: # 1.被该元类控制的类生成对象,会调用元类的call方法 # 2.在call中的返回值就是创建的对象 # 3.在call中 # -- 通过object开辟空间产生对象 # -- 用被控制的类回调到自己的init方法完成名称空间的赋值 # -- 将修饰好的对象反馈给外界 def __call__(cls, *args, **kwargs): # 目的:创建对象,就可以对对象加以限制 ********************** obj = object.__new__(cls) # 通过object为哪个类开辟空间 cls.__init__(obj, *args, **kwargs) # 调回当前被控制的类自身的init方法,完成名称空间的赋值 return obj # 问题: # 1.继承是想获得父级的属性和方法,元类是要将类的创建于对象的创建加以控制 # 2.类的创建由元类的__init__方法控制 # -- 元类(class_name, bases, namespase) => 元类.__init__来完成实例化 # 3.类的对象的创建由元类的__call__方法控制 # -- 对象产生是需要开辟空间,在__call__中用object.__new__()来完成的 class Student(object, metaclass=MyMeta): pass # class Student: <=> type(class_name, bases, namespace)
# 单例:一个类只能产生一个实例 # 为什么要有单例: # 1.该类需要对象的产生 # 2.对象一旦产生,在任何位置再实例化对象,只能得到第一次实例化出来的对象 # 3.在对象唯一创建后,可以通过属性修改或方法间接修改属性,来完成数据的更新,不能通过实例化方式更新数据