随笔10

作业信息 

博客班级 机器学习实验-计算机18级
作业要求 作业要求
作业目标 理解决策树算法原理,掌握决策树算法框架
学号 3180701241

 

 

 

 

 

一、实验目的
1.理解决策树算法原理,掌握决策树算法框架;
2.理解决策树学习算法的特征选择、树的生成和树的剪枝;
3.能根据不同的数据类型,选择不同的决策树算法;
4.针对特定应用场景及数据,能应用决策树算法解决实际问题。
二、实验内容
1.设计算法实现熵、经验条件熵、信息增益等方法。
2.实现ID3算法。
3.熟悉sklearn库中的决策树算法;
4.针对iris数据集,应用sklearn的决策树算法进行类别预测。
5.针对iris数据集,利用自编决策树算法进行类别预测。
三、实验报告要求
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论ID3、5算法的应用场景;
四、实验过程及其步骤

1、

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math
from math import log
import pprint

def create_data():
    datasets = [['青年', '', '', '一般', ''],
                ['青年', '', '', '', ''],
                ['青年', '', '', '', ''],
                ['青年', '', '', '一般', ''],
                ['青年', '', '', '一般', ''],
                ['中年', '', '', '一般', ''],
                ['中年', '', '', '', ''],
                ['中年', '', '', '', ''],
                ['中年', '', '', '非常好', ''],
                ['中年', '', '', '非常好', ''],
                ['老年', '', '', '非常好', ''],
                ['老年', '', '', '', ''],
                ['老年', '', '', '', ''],
                ['老年', '', '', '非常好', ''],
                ['老年', '', '', '一般', ''],
                ]
    labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
    # 返回数据集和每个维度的名称
    return datasets, labels
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
train_data

 

 

X, y = data[:,:-1], data[:,-1]  # 数据类型转换,为了后面的数学计算
# 熵
def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([(p / data_length) * log(p / data_length, 2)
            for p in label_count.values()])
    return ent
# def entropy(y):
# """
# Entropy of a label sequence
# """
# hist = np.bincount(y)
# ps = hist / np.sum(hist)
# return -np.sum([p * np.log2(p) for p in ps if p > 0])
# 经验条件熵
def cond_ent(datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum(
        [(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
    return cond_ent
# 信息增益
def info_gain(ent, cond_ent):
    return ent - cond_ent
def info_gain_train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
# ent = entropy(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
        best_feature.append((c, c_info_gain))
        print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
# 比较大小
    best_ = max(best_feature, key=lambda x: x[-1])
    return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
info_gain_train(np.array(datasets))

 

 2、

# 定义节点类 二叉树
class Node:
    def __init__(self, root=True, label=None, feature_name=None, feature=None):
        self.root = root
        self.label = label
        self.feature_name = feature_name
        self.feature = feature
        self.tree = {}
        self.result = {
            'label:': self.label,
            'feature': self.feature,
            'tree': self.tree
        }
    def __repr__(self):
        return '{}'.format(self.result)
    def add_node(self, val, node):
        self.tree[val] = node
    def predict(self, features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].predict(features)
class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}
    # 熵
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p / data_length) * log(p / data_length, 2)
                    for p in label_count.values()])
        return ent
    # 经验条件熵
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
                        for p in feature_sets.values()])
        return cond_ent
    # 信息增益
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent
    def info_gain_train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
        # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return best_
    def train(self, train_data):
        """
        input:数据集D(DataFrame格式),特征集A,阈值eta
        output:决策树T
        """
        _, y_train, features = train_data.iloc[:, :
                                                -1], train_data.iloc[:,
                                                                    -1], train_data.columns[:
                                                                                            -1]
        # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
        if len(y_train.value_counts()) == 1:
            return Node(root=True, label=y_train.iloc[0])
        # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
        if len(features) == 0:
            return Node(
                root=True,
                label=y_train.value_counts().sort_values(
                    ascending=False).index[0])
        # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
        max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
        max_feature_name = features[max_feature]
        # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返
        if max_info_gain < self.epsilon:
            return Node(
                root=True,
                label=y_train.value_counts().sort_values(
                    ascending=False).index[0])
        # 5,构建Ag子集
        node_tree = Node(
            root=False, feature_name=max_feature_name, feature=max_feature)
        feature_list = train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_train_df = train_data.loc[train_data[max_feature_name] ==
                                            f].drop([max_feature_name], axis=1)
            # 6, 递归生成树
            sub_tree = self.train(sub_train_df)
            node_tree.add_node(f, sub_tree)
        # pprint.pprint(node_tree.tree)
        return node_tree
    def fit(self, train_data):
        self._tree = self.train(train_data)
        return self._tree
    def predict(self, X_test):
        return self._tree.predict(X_test)

datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)
tree

 

 

dt.predict(['老年', '', '', '一般'])

 

 

# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = [
        'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
    ]
    data = np.array(df.iloc[:100, [0, 1, -1]])
    # print(data)
    return data[:, :2], data[:, -1]
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
复制代码
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
import graphviz
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train,)

 

 

clf.score(X_test, y_test)

 

 

tree_pic = export_graphviz(clf, out_file="mytree.pdf")
with open('mytree.pdf') as f:
    dot_graph = f.read()
graphviz.Source(dot_graph)
from sklearn.tree import DecisionTreeClassifier from sklearn import preprocessing import numpy as np import pandas as pd from sklearn import tree import graphviz features = ["年龄", "有工作", "有自己的房子", "信贷情况"] X_train = pd.DataFrame([ ["青年", "", "", "一般"], ["青年", "", "", ""], ["青年", "", "", ""], ["青年", "", "", "一般"], ["青年", "", "", "一般"], ["中年", "", "", "一般"], ["中年", "", "", ""], ["中年", "", "", ""], ["中年", "", "", "非常好"], ["中年", "", "", "非常好"], ["老年", "", "", "非常好"], ["老年", "", "", ""], ["老年", "", "", ""], ["老年", "", "", "非常好"], ["老年", "", "", "一般"] ]) y_train = pd.DataFrame(["", "", "", "", "", "", "", "", "", "", "", "", "", "", ""]) # 数据预处理 le_x = preprocessing.LabelEncoder() le_x.fit(np.unique(X_train)) X_train = X_train.apply(le_x.transform) le_y = preprocessing.LabelEncoder() le_y.fit(np.unique(y_train)) y_train = y_train.apply(le_y.transform) # 调用sklearn.DT建立训练模型 model_tree = DecisionTreeClassifier() model_tree.fit(X_train, y_train) # 可视化 dot_data = tree.export_graphviz(model_tree, out_file=None, feature_names=features, class_names=[str(k) for k in np.unique(y_train)], filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph import numpy as np class LeastSqRTree: def __init__(self, train_X, y, epsilon): # 训练集特征值 self.x = train_X # 类别 self.y = y # 特征总数 self.feature_count = train_X.shape[1] # 损失阈值 self.epsilon = epsilon # 回归树 self.tree = None def _fit(self, x, y, feature_count, epsilon): # 选择最优切分点变量j与切分点s (j, s, minval, c1, c2) = self._divide(x, y, feature_count) # 初始化树 tree = {"feature": j, "value": x[s, j], "left": None, "right": None} if minval < self.epsilon or len(y[np.where(x[:, j] <= x[s, j])]) <= 1: tree["left"] = c1 else: tree["left"] = self._fit(x[np.where(x[:, j] <= x[s, j])], y[np.where(x[:, j] <= x[s, j])], self.feature_count, self.epsilon) if minval < self.epsilon or len(y[np.where(x[:, j] > s)]) <= 1: tree["right"] = c2 else: tree["right"] = self._fit(x[np.where(x[:, j] > x[s, j])], y[np.where(x[:, j] > x[s, j])], self.feature_count, self.epsilon) return tree def fit(self): self.tree = self._fit(self.x, self.y, self.feature_count, self.epsilon) @staticmethod def _divide(x, y, feature_count): # 初始化损失误差 cost = np.zeros((feature_count, len(x))) # 公式5.21 for i in range(feature_count): for k in range(len(x)): # k行i列的特征值 value = x[k, i] y1 = y[np.where(x[:, i] <= value)] c1 = np.mean(y1) y2 = y[np.where(x[:, i] > value)] c2 = np.mean(y2) y1[:] = y1[:] - c1 y2[:] = y2[:] - c2 cost[i, k] = np.sum(y1 * y1) + np.sum(y2 * y2) # 选取最优损失误差点 cost_index = np.where(cost == np.min(cost)) # 选取第几个特征值 j = cost_index[0][0] # 选取特征值的切分点 s = cost_index[1][0] # 求两个区域的均值c1,c2 c1 = np.mean(y[np.where(x[:, j] <= x[s, j])]) c2 = np.mean(y[np.where(x[:, j] > x[s, j])]) return j, s, cost[cost_index], c1, c2 train_X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).T y = np.array([4.50, 4.75, 4.91, 5.34, 5.80, 7.05, 7.90, 8.23, 8.70, 9.00]) model_tree = LeastSqRTree(train_X, y, .2) model_tree.fit() model_tree.tree

 

五、实验小结

 分析决策树剪枝策略
(1)如何进行决策树剪枝
决策树的剪枝基本策略有 预剪枝 (Pre-Pruning) 和 后剪枝 (Post-Pruning) 。先对数据集划分成训练集和验证集,训练集用来决定树生成过程中每个结点划分所选择的属性;验证集在预剪枝中用于决定该结点是否有必要依据该属性进行展开,在后剪枝中用于判断该结点是否需要进行剪枝。
(2)预剪枝

posted @ 2021-06-27 23:31  雪舞长空  阅读(40)  评论(0编辑  收藏  举报