摘要:
## Abstract 背景:已有的方法仅仅利用了已经存在的models,只在model inference阶段检测bugs 本文: Muffin 方法:specifically-designed model fuzzing approach + 定制一组指标来衡量不同DL库之间的不一致differ 阅读全文
摘要:
## Abstract 本文:CocoFuzzing Task: test ML Models, test code processing models 方法:10 mutators to automatically generate validly and semantically preserv 阅读全文
摘要:
## Abstract 背景:Python API使得DL Libraries的参数类型难以确定 本文:FreeFuzz Github: https://github.com/ise-uiuc/FreeFuzz 方法:从1. 来自库文档的代码片段 2. 测试 3. DL models in the 阅读全文
摘要:
## Abstract 本文: RapidFuzz Task: use GAN to fuzz program with highly-structured inputs Method: use GAN to capture the data structure, then locate the h 阅读全文
摘要:
## Abstract 本文:graph-based fuzz testing Task: Fuzzing Machine Learning Libraries using operator graph Github: https://github.com/gbftdlie/G (Q?https:/ 阅读全文
摘要:
## Abstract 背景: 1. Q: 现有的方法没有考虑到small perturbations的影响,或者这些perturbation只能限定在某个特定的模型上使用,在其他模型上则本身就不符合example要求(可能是指标签就会改变?) 2. 现有的方法多使用浅层的feature const 阅读全文
摘要:
## Abstract 本文: DeepHunter Task: Fuzzing Deep Learning Models Github: https://github.com/Shimmer93/Deephunter-backup Method: 1. Metamorphic mutation t 阅读全文
摘要:
## Abstract 背景: 1. 目前已有工作test underlying operator-level DL Libraries,但测试compier的工作比较少 2. compiler: compile high-level tensor computation graphs into h 阅读全文
摘要:
## Abstract 背景:现有的constraint-extraction tech 对extracting DL-specific input constraints效率太低 本文:DocTer Github: https://github.com/lin-tan/DocTer Task: e 阅读全文
Proj CDeepFuzz Paper Reading: Fuzzing Deep-Learning Libraries via Automated Relational API Inference
摘要:
## Abstract 背景:使用API间sharing similar input parameters and inputs的关系能更有效测试DL Libraries 本文: DeepREL Github: https://github.com/ise-uiuc/DeepREL Task: in 阅读全文