09 2023 档案

摘要:Title Adaptive restart for stochastic synthesis PLDI 2021 Task Distribute the power between multiple runs in stochastic program synthesis to accelerat 阅读全文
posted @ 2023-09-11 19:19 雪溯 阅读(9) 评论(0) 推荐(0) 编辑
摘要:## Abstract 背景:Compiling DNN models into high-efficiency executables is not easy: the compilation procedure often involves converting high-level model 阅读全文
posted @ 2023-09-08 23:22 雪溯 阅读(12) 评论(0) 推荐(0) 编辑
摘要:## Abstract 背景:深度学习编译器处理的深度学习模型与命令式程序有根本的不同,因为深度学习模型中的程序逻辑是隐式的。(the DL models processed by DL compilers differ fundamentally from imperative programs 阅读全文
posted @ 2023-09-08 04:17 雪溯 阅读(17) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文:DeepMutation Github: https://github.com/berkuva/mutation-testing-for-DNNs Task: mutation testing framework specialized for DL systems t 阅读全文
posted @ 2023-09-08 04:08 雪溯 阅读(5) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文: Task: Testing the classification accuracy of a deep learning framework that includes a CNN Method: 1. classifier built with SVM 2. met 阅读全文
posted @ 2023-09-08 03:49 雪溯 阅读(9) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文: Task: Fuzzing Machine Learning Libraries Method: 1. optimized mutation strategies 2. prioritize the seed 3. optimal mutation strategy 阅读全文
posted @ 2023-09-08 03:17 雪溯 阅读(5) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文:DeepCover Github: https://github.com/TrustAI/DeepCover Task: propose 4 novel test criteria to test DNNs Method: inspired by MC/DC cover 阅读全文
posted @ 2023-09-08 02:14 雪溯 阅读(9) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文:SparseProp Github: https://github.com/IST-DASLab/sparseprop Task: a back-propagation algo for sparse training data, a fast vectorized i 阅读全文
posted @ 2023-09-07 23:57 雪溯 阅读(10) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文: PyTorch Task: detail the implementation and architecture of PyTorch Github: https://github.com/pytorch/pytorch 特点: 1. PyTorch同时关注可用性和速 阅读全文
posted @ 2023-09-07 22:53 雪溯 阅读(27) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文: Task: Review on the use of LLMs in software testing Method: 1. analyzes 52 relevant studies ## 1. Intro ![](https://img2023.cnblogs.co 阅读全文
posted @ 2023-09-07 22:43 雪溯 阅读(61) 评论(0) 推荐(0) 编辑
摘要:## Abstract 背景: 1. 本文研究的不是被恶意植入的后门,而是products of defects in training 2. 攻击模式: injecting some small fixed input pattern(backdoor) to induce misclassifi 阅读全文
posted @ 2023-09-07 18:13 雪溯 阅读(22) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文: BTD github: https://github.com/monkbai/DNN-decompiler/ Task: a decompiler for DNN models to output DNN specifications including: opera 阅读全文
posted @ 2023-09-07 17:32 雪溯 阅读(16) 评论(0) 推荐(0) 编辑
摘要:## Abstract 背景:In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning mod 阅读全文
posted @ 2023-09-07 08:01 雪溯 阅读(15) 评论(0) 推荐(0) 编辑
摘要:## Abstract 背景:The correctness of DL systems is crucial for trust in DL applications 本文: NeuRI BaseTool: FreeFuzz Github: https://github.com/ise-uiuc/ 阅读全文
posted @ 2023-09-07 06:38 雪溯 阅读(23) 评论(0) 推荐(0) 编辑
摘要:## Abstract 背景:目前大多数的adversarial attack method on pre-trained models of code忽略了perturbations should be natural to human judges(naturalness requirement 阅读全文
posted @ 2023-09-06 23:34 雪溯 阅读(22) 评论(0) 推荐(0) 编辑
摘要:## Abstract 背景:已有的方法(Muffin, Lemon, Cradle) can cover at most 34.1% layer inputs, 25.9% layer parameter values, and 15.6% layer sequences. 本文:COMET Gi 阅读全文
posted @ 2023-09-06 23:03 雪溯 阅读(23) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文:IvySyn Task: discover memory error vulnerabilities in DL frameworks BugType: memory safety errors, fatal runtime errors Method: 1. 利用na 阅读全文
posted @ 2023-09-06 21:34 雪溯 阅读(22) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文: Task: 1. prove invariance-inducing regularizers can increase predictive accuracy for worst-case spatial transformations 2. prove that 阅读全文
posted @ 2023-09-05 23:14 雪溯 阅读(5) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文: Task: 1. study the faithfulness of an explanation system to the underlying prediction model on consistency and sufficiency 2. introduc 阅读全文
posted @ 2023-09-05 22:00 雪溯 阅读(5) 评论(0) 推荐(0) 编辑
摘要:## Abstract 背景:目前对cross-framework conversion中的inconsistencies和security bugs的研究少有 本文:TensorScope Github: https://github.com/tensorscopepro/Tensorscope 阅读全文
posted @ 2023-09-05 05:51 雪溯 阅读(17) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文: DeepTest Task: a systematic testing tool for DNN-driven vehicles Method: 1. generated test cases with real-world changes like rain, fo 阅读全文
posted @ 2023-09-04 20:14 雪溯 阅读(8) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文: DeepGauge Task: provide multi-granularity testing criteria for DL systems Method: multi-granularity testing criteria for DL systems: 1 阅读全文
posted @ 2023-09-04 17:14 雪溯 阅读(16) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文:DeepCT Task: Testing DL Models with Combinatorial Testing Method: 1. 将输出值的空间离散化为区间,以便覆盖每个区间,对不同层内的神经元交互进⾏采样,并减少必须执⾏的测试输⼊的数量。 2. a set o 阅读全文
posted @ 2023-09-04 16:36 雪溯 阅读(17) 评论(0) 推荐(0) 编辑
摘要:## Abstract 本文:描述automatic differentiation module of PyTorch 包括:Lua Torch, Chainer, HIPS Autograd Task: Provides a high-performance environment on dif 阅读全文
posted @ 2023-09-01 23:19 雪溯 阅读(7) 评论(0) 推荐(0) 编辑
摘要:## Abstract Github: https://github.com/shijy16/ACETest 背景: 1. DL operators 用来计算多维tensors,很重要 本文:ACETest Task: automatically extract input validation c 阅读全文
posted @ 2023-09-01 03:17 雪溯 阅读(28) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示