快速切题 sgu118. Digital Root 秦九韶公式
118. Digital Root
time limit per test: 0.25 sec.
memory limit per test: 4096 KB
Let f(n) be a sum of digits for positive integer n. If f(n) is one-digit number then it is a digital root for n and otherwise digital root of n is equal to digital root of f(n). For example, digital root of 987is 6. Your task is to find digital root for expression A1*A2*…*AN + A1*A2*…*AN-1 + … + A1*A2 + A1.
Input
Input file consists of few test cases. There is K (1<=K<=5) in the first line of input. Each test case is a line. Positive integer number N is written on the first place of test case (N<=1000). After it there areN positive integer numbers (sequence A). Each of this numbers is non-negative and not more than 109.
Output
Write one line for every test case. On each line write digital root for given expression.
Sample Input
1 3 2 3 4
Sample Output
5
//started 21:52 #include<cstdio> #include <cstring> using namespace std; const int maxn=1000; int a[maxn],n; int main(){ int T; scanf("%d",&T); while(T--){ scanf("%d",&n); for(int i=0;i<n;i++)scanf("%d",a+i); int ans=0; for(int i=n-1;i>=0;i--){ ans+=1; ans*=(a[i]%9); ans%=9; } if(ans!=0)printf("%d\n",ans); else { for(int i=0;i<n;i++){ if(a[i]!=0){ puts("9"); break; } if(i=n-1)puts("0"); } } } return 0; } //first ok 21:57
//first wa 22:02 假设爆int