快速切题 sgu116. Index of super-prime bfs+树思想
116. Index of super-prime
time limit per test: 0.25 sec.
memory limit per test: 4096 KB
Let P1, P2, … ,PN, … be a sequence of prime numbers. Super-prime number is such a prime number that its current number in prime numbers sequence is a prime number too. For example, 3 is a super-prime number, but 7 is not. Index of super-prime for number is 0 iff it is impossible to present it as a sum of few (maybe one) super-prime numbers, and if such presentation exists, index is equal to minimal number of items in such presentation. Your task is to find index of super-prime for given numbers and find optimal presentation as a sum of super-primes.
Input
There is a positive integer number in input. Number is not more than 10000.
Output
Write index I for given number as the first number in line. Write I super-primes numbers that are items in optimal presentation for given number. Write these I numbers in order of non-increasing.
Sample Input
6
Sample Output
2 3 3
用时:14min
#include <cstdio> #include <cstring> #include <queue> using namespace std; const int maxnum=10001; bool isntprime[maxnum];//是否质数 bool supp[maxnum];//是否superprime int sup[300],pind;//把superprime放在一起 int ans[maxnum][2];//每个数必然=一个放在queue里的数+一个superprime,相当于记录路径 int vis[maxnum];//bfs记录状态 int n; queue<int>que; int bfs(){//找出当前数由那些超级质数构成,可以 while(!que.empty()&&vis[n]==0){ int tp=que.front();que.pop(); for(int i=0;i<pind;i++){ if(tp+sup[i]<=n&&vis[tp+sup[i]]==0){ vis[tp+sup[i]]=vis[tp]+1; ans[tp+sup[i]][0]=sup[i]; ans[tp+sup[i]][1]=tp; que.push(tp+sup[i]); if(tp+sup[i]==n)break; } else if(tp+sup[i]>n)break; } } return vis[n]; } void calc(){//找出超级质数 int cnt=1; for(int i=3;i<maxnum;i+=2){ if(!isntprime[i]){ cnt++; if(((cnt&1)!=0||cnt==2)&&!isntprime[cnt]){ sup[pind++]=i; supp[i]=true; vis[i]=1; if(i<=n)que.push(i); } for(int j=3*i;j<maxnum;j+=2*i){ isntprime[j]=true; } } } } int main(){ scanf("%d",&n); calc(); int num=bfs(); if(num==0){ puts("0"); } else { printf("%d\n",vis[n]); int tn=n; while(!supp[tn]){ printf("%d ",ans[tn][0]); tn=ans[tn][1]; } printf("%d\n",tn); } return 0; }