POJ 2663 Tri Tiling 矩阵快速幂 难度:3
Tri Tiling
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7841 | Accepted: 4113 |
Description
In how many ways can you tile a 3xn rectangle with 2x1 dominoes?
Here is a sample tiling of a 3x12 rectangle.
Here is a sample tiling of a 3x12 rectangle.
Input
Input consists of several test cases followed by a line containing -1. Each test case is a line containing an integer 0 <= n <= 30.
Output
For each test case, output one integer number giving the number of possible tilings.
Sample Input
2 8 12 -1
Sample Output
3 153 2131
思路:只有八种转移状态,设初始状态为0(全空),得到状态7(111全染)
#include <cstdio> #include <cstring> #include <vector> using namespace std; typedef vector<long long > vec; typedef vector<vec> mat; const int mod=(1<<31-1); mat mul(mat &A,mat &B){ mat C(A.size(),vec(B[0].size())); for(int i=0;i<A.size();i++){ for(int k=0;k<B.size();k++){ for(int j=0;j<B[0].size();j++){ C[i][j]=(C[i][j]+A[i][k]*B[k][j])%mod; } } } return C; } mat pow(mat A,long long n){ mat B(A.size(),vec(A.size())); for(int i=0;i<A.size();i++){ B[i][i]=1; } while(n>0){ if(n&1)B=mul(B,A); A=mul(A,A); n>>=1; } return B; } void calc(int m){ mat m1(8,vec(8,0)),E(8,vec(8,0)); E[0][7]=1; E[1][6]=1; E[2][5]=1; E[3][4]=1; E[4][3]=1;E[4][7]=1; E[5][2]=1; E[6][1]=E[6][7]=1; E[7][0]=1;E[7][4]=E[7][6]=1; E=pow(E,m); /*for(int i=0;i<E[0].size();i++){ for(int j=0;j<E.size();j++){ printf("%d ",E[i][j]); } puts(""); }*/ printf("%I64d\n",E[0][7]); } int main(){ int m=0; while(scanf("%d",&m)==1&&m!=-1){ calc(m+1); } return 0; }