Proj CDeepFuzz Paper Reading: DLFuzz: Differential Fuzzing Testing of Deep Learning Systems
Abstract
本文: DLFuzz
方法: Adversarial inputs + Fuzzing, Differential Testing between before/after adding perturb
实验:
数据集:MNIST LeNet, ImageNet + VGG/ResNet
Competitor: DeepXplore
效果:
- +338.59%的对抗性输⼊,,89.82% smaller perturbations,+2.86% neuron coverage,节省20.11%的时间消耗