Proj CDeepFuzz Paper Reading: NNSmith: Generating Diverse and Valid Test Cases for Deep Learning Compilers
Abstract
背景:Deep-learning compiler例如TVM和TensorRT被使用来optimize DNN模型以达到更好的性能要求;在Deep Learning Compiler中的bug可能导致语义改变
本文:NNSmith
Task: fuzz deep-learning compilers
Method:
- using light-weight operator specifications to generate test models
- gradient-search to find model inputs that avoid any floating-point exceptional values to remove false alarm
- differential testing between libraries
实验:
对象:TVM, TensorRT, ONNXRuntime, PyTorch
目前支持:tvm, pt2, torchjit, tensorrt, on runtime, xla, tflite
效果:detect 72 bugs, 58 confirmed, 51 fixed