Proj CDeepFuzz Paper Reading: NNSmith: Generating Diverse and Valid Test Cases for Deep Learning Compilers

Abstract

背景:Deep-learning compiler例如TVM和TensorRT被使用来optimize DNN模型以达到更好的性能要求;在Deep Learning Compiler中的bug可能导致语义改变
本文:NNSmith
Task: fuzz deep-learning compilers

Method:

  1. using light-weight operator specifications to generate test models
  2. gradient-search to find model inputs that avoid any floating-point exceptional values to remove false alarm
  3. differential testing between libraries

实验:
对象:TVM, TensorRT, ONNXRuntime, PyTorch
目前支持:tvm, pt2, torchjit, tensorrt, on runtime, xla, tflite
效果:detect 72 bugs, 58 confirmed, 51 fixed

posted @ 2023-08-06 20:33  雪溯  阅读(32)  评论(0编辑  收藏  举报