Proj CMI Paper Reading: A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification
Abstract
背景:
Pool-based active learning (AL)目的在于优化注释过程
问题:人工注释者可能会有注释错误或者疲劳,可能不愿意响应
为此,提出的新主动学习AL策略有以下特点之一
- 对人工注释进行建模,考虑专家不在场的情况
- generalization of the interaction with human annotators through different query and annotation types, such as asking an annotator for feedback on an inferred classification rule 对人工注释交互进行泛化,引入不同的查询或者注释类型
- consideration of complex cost schemes regarding annotations and misclassifications 为错误分类等注释问题引入其他复杂解决方案
本文 - 引入了一个通用策略
- 对大约60种方法进行了分类
- 概述未来研究方向