UVa 11825 - Hackers' Crackdown DP, 枚举子集substa = (substa - 1)&sta 难度: 2

题目

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2925


题意

n个节点,每个节点都有完全相同的n项服务。

每次可以选择一个节点,破坏该节点和相邻节点的某项服务。

问最多能完全破坏多少服务?

 

思路

如刘书,

直接枚举状态的子集

注意元素个数为k的集合有C^k_n个子集,那么枚举的时间复杂度为sum{c^k_n * 2^k} = 3^n,当n=16时,3^n=4e7,可以承受。

注意枚举子集可以通过substa = (substa - 1)&sta来做,子集的补集则为substa ^ sta。

 

感想

1. 一开始觉得枚举时间是2^2n,觉得不行,还是缺乏细致的计算

 

代码

#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <tuple>
#define LOCAL_DEBUG
using namespace std;
typedef pair<int, int> MyPair;
const int MAXN = 16;
const int MAXSTA = 1 << 16;
int edges[MAXN][MAXN];
int edgeCnt[MAXN];
int vis[MAXN];
int vis2[MAXSTA];
int dp[MAXSTA];

int main() {
#ifdef LOCAL_DEBUG
    freopen("C:\\Users\\Iris\\source\\repos\\ACM\\ACM\\input.txt", "r", stdin);
    //freopen("C:\\Users\\Iris\\source\\repos\\ACM\\ACM\\output.txt", "w", stdout);
#endif // LOCAL_DEBUG
    int n;
    for (int ti = 1; scanf("%d", &n) == 1 && n; ti++) {
        for (int i = 0; i < n; i++) {
            scanf("%d", edgeCnt + i);
            for (int j = 0; j < edgeCnt[i]; j++) {
                scanf("%d", edges[i] + j);
            }
        }
        int maxsta = (1 << n) - 1;
        for (int sta = 0; sta <= maxsta; sta++) {
            memset(vis, 0, sizeof vis);
            for (int i = 0; i < n; i++) {
                if (sta & (1 << i)) {
                    vis[i] = true;
                    for (int j = 0; j < edgeCnt[i]; j++) {
                        vis[edges[i][j]] = true;
                    }
                }
            }
            bool fl = true;
            for (int i = 0; i < n; i++) {
                if (!vis[i]) {
                    fl = false;
                }
            }
            if (fl) {
                dp[sta] = 1;
            }
            else {
                dp[sta] = 0;
            }
            
        }
        for (int sta = 0; sta <= maxsta; sta++) {
            for (int subSta = sta; subSta != 0; subSta = (subSta - 1) & sta) {
                dp[sta] = max(dp[sta], dp[sta ^ subSta] + dp[subSta]);
            }

        }
        printf("Case %d: %d\n", ti, dp[maxsta]);
    }

    return 0;
}
View Code

 

posted @ 2019-02-25 22:39  雪溯  阅读(222)  评论(0编辑  收藏  举报