学数答题160913-数列求和有界

160913(14分)数列$\left\{ {{a}_{n}} \right\}$满足:${{a}_{1}}=1$,${{a}_{n+1}}={{a}_{n}}+2n+1$,求证:$\sum\limits_{i=1}^{n}{\dfrac{1}{{{a}_{i}}}}<\dfrac{5}{3}$.


 

题目来源:2013年中国科学技术大学入学考试

证明:由${{a}_{n+1}}={{a}_{n}}+2n+1$,得${{a}_{n+1}}-{{a}_{n}}=2n+1$,

累加得${{a}_{n}}=\left( {{a}_{n}}-{{a}_{n-1}} \right)+\left( {{a}_{n-1}}-{{a}_{n-2}} \right)+\cdots +\left( {{a}_{2}}-{{a}_{1}} \right)+{{a}_{1}}$,

即${{a}_{n}}=\left[ 2\times \left( n-1 \right)+1 \right]+\left[ 2\times \left( n-2 \right)+1 \right]+\cdots +\left[ 2\times 1+1 \right]+1$,

得${{a}_{n}}=1+2\times \dfrac{n\left( n-1 \right)}{2}+\left( n-1 \right)={{n}^{2}}$,

因此,$\sum\limits_{i=1}^{n}{\dfrac{1}{{{a}_{i}}}=}\sum\limits_{i=1}^{n}{\dfrac{1}{{{i}^{2}}}}$

$<1+\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{25}+\left[ \dfrac{1}{5\times 6}+\dfrac{1}{6\times 7}+\cdots +\dfrac{1}{\left( n-1 \right)n} \right]$

$=1+\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{25}+\dfrac{1}{5}-\dfrac{1}{n}$

$=1+\dfrac{2389}{3600}-\dfrac{1}{n}$$<\dfrac{5}{3}$.

posted @ 2016-09-14 22:40  学数团  阅读(184)  评论(0编辑  收藏  举报